Properties

Label 3.5e3_7e2_29e2.6t6.1
Dimension 3
Group $A_4\times C_2$
Conductor $ 5^{3} \cdot 7^{2} \cdot 29^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$5151125= 5^{3} \cdot 7^{2} \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 18 x^{4} + 32 x^{3} - 118 x^{2} + 458 x - 1651 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 34 a + 24 + \left(9 a + 7\right)\cdot 41 + \left(35 a + 15\right)\cdot 41^{2} + 23\cdot 41^{3} + \left(33 a + 38\right)\cdot 41^{4} + \left(8 a + 22\right)\cdot 41^{5} + \left(35 a + 14\right)\cdot 41^{6} + 40 a\cdot 41^{7} + \left(22 a + 36\right)\cdot 41^{8} +O\left(41^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 6 + 12\cdot 41 + 25\cdot 41^{2} + 6\cdot 41^{3} + 7\cdot 41^{4} + 38\cdot 41^{6} + 26\cdot 41^{7} + 25\cdot 41^{8} +O\left(41^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 39 + 41 + 41^{2} + 23\cdot 41^{3} + 23\cdot 41^{4} + 14\cdot 41^{5} + 20\cdot 41^{6} +O\left(41^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 23 + \left(28 a + 28\right)\cdot 41 + \left(22 a + 26\right)\cdot 41^{2} + \left(37 a + 35\right)\cdot 41^{3} + \left(18 a + 30\right)\cdot 41^{4} + \left(40 a + 3\right)\cdot 41^{5} + \left(30 a + 25\right)\cdot 41^{6} + \left(19 a + 30\right)\cdot 41^{7} + \left(25 a + 31\right)\cdot 41^{8} +O\left(41^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 3 + \left(31 a + 3\right)\cdot 41 + \left(5 a + 29\right)\cdot 41^{2} + \left(40 a + 31\right)\cdot 41^{3} + \left(7 a + 13\right)\cdot 41^{4} + \left(32 a + 16\right)\cdot 41^{5} + \left(5 a + 29\right)\cdot 41^{6} + 5\cdot 41^{7} + \left(18 a + 23\right)\cdot 41^{8} +O\left(41^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 39 a + 29 + \left(12 a + 28\right)\cdot 41 + \left(18 a + 25\right)\cdot 41^{2} + \left(3 a + 2\right)\cdot 41^{3} + \left(22 a + 9\right)\cdot 41^{4} + 24\cdot 41^{5} + \left(10 a + 36\right)\cdot 41^{6} + \left(21 a + 17\right)\cdot 41^{7} + \left(15 a + 6\right)\cdot 41^{8} +O\left(41^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,2)(3,5,6)$
$(1,5)$
$(2,3)$
$(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,5)(2,3)(4,6)$ $-3$
$3$ $2$ $(1,5)$ $1$
$3$ $2$ $(1,5)(2,3)$ $-1$
$4$ $3$ $(1,4,2)(3,5,6)$ $0$
$4$ $3$ $(1,2,4)(3,6,5)$ $0$
$4$ $6$ $(1,6,3,5,4,2)$ $0$
$4$ $6$ $(1,2,4,5,3,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.