Properties

Label 3.5e3_47e2.4t5.2
Dimension 3
Group $S_4$
Conductor $ 5^{3} \cdot 47^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$276125= 5^{3} \cdot 47^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 14 x^{2} + 4 x + 61 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 211 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 130 + 121\cdot 211 + 76\cdot 211^{2} + 184\cdot 211^{3} + 83\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 133 + 155\cdot 211 + 134\cdot 211^{2} + 39\cdot 211^{3} + 7\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 175 + 108\cdot 211 + 150\cdot 211^{2} + 98\cdot 211^{3} + 15\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 196 + 35\cdot 211 + 60\cdot 211^{2} + 99\cdot 211^{3} + 104\cdot 211^{4} +O\left(211^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.