Properties

Label 3.5e2_83e2.18t24.3c2
Dimension 3
Group $(C_3^2:C_3):C_2$
Conductor $ 5^{2} \cdot 83^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$(C_3^2:C_3):C_2$
Conductor:$172225= 5^{2} \cdot 83^{2} $
Artin number field: Splitting field of $f= x^{9} - x^{8} - 3 x^{7} + 4 x^{6} + 2 x^{5} - 7 x^{4} - 4 x^{3} + 4 x^{2} + 4 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 18T24
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 13.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{3} + 2 x + 18 $
Roots:
$r_{ 1 }$ $=$ $ 12 a^{2} + 8 a + 3 + \left(9 a^{2} + 21 a + 8\right)\cdot 23 + \left(3 a^{2} + 15 a\right)\cdot 23^{2} + \left(12 a^{2} + 18 a + 20\right)\cdot 23^{3} + \left(13 a^{2} + 21 a + 2\right)\cdot 23^{4} + \left(17 a^{2} + 15 a + 20\right)\cdot 23^{5} + \left(3 a^{2} + 11 a + 8\right)\cdot 23^{6} + \left(14 a^{2} + a + 8\right)\cdot 23^{7} + \left(5 a^{2} + 5 a + 13\right)\cdot 23^{8} + \left(2 a^{2} + 22 a + 7\right)\cdot 23^{9} + \left(14 a^{2} + 7 a + 19\right)\cdot 23^{10} + \left(16 a^{2} + 17 a\right)\cdot 23^{11} + \left(13 a^{2} + 4\right)\cdot 23^{12} +O\left(23^{ 13 }\right)$
$r_{ 2 }$ $=$ $ a^{2} + 19 + \left(22 a^{2} + 20 a + 1\right)\cdot 23 + \left(12 a^{2} + 20 a + 13\right)\cdot 23^{2} + \left(22 a^{2} + 22 a + 18\right)\cdot 23^{3} + \left(11 a^{2} + 3 a\right)\cdot 23^{4} + \left(22 a^{2} + 19 a + 19\right)\cdot 23^{5} + \left(18 a^{2} + 9 a + 13\right)\cdot 23^{6} + \left(14 a^{2} + 8 a + 1\right)\cdot 23^{7} + \left(3 a^{2} + 11 a + 3\right)\cdot 23^{8} + \left(17 a^{2} + 17 a + 12\right)\cdot 23^{9} + \left(3 a^{2} + 5\right)\cdot 23^{10} + \left(21 a^{2} + 8 a + 22\right)\cdot 23^{11} + \left(21 a^{2} + 17 a + 14\right)\cdot 23^{12} +O\left(23^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 5 + 4\cdot 23 + 23^{2} + 5\cdot 23^{3} + 11\cdot 23^{4} + 9\cdot 23^{5} + 3\cdot 23^{6} + 12\cdot 23^{7} + 17\cdot 23^{8} + 16\cdot 23^{10} + 13\cdot 23^{11} + 21\cdot 23^{12} +O\left(23^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 4 + 3\cdot 23 + 18\cdot 23^{2} + 20\cdot 23^{3} + 19\cdot 23^{4} + 18\cdot 23^{5} + 22\cdot 23^{6} + 9\cdot 23^{7} + 20\cdot 23^{8} + 12\cdot 23^{9} + 3\cdot 23^{10} + 22\cdot 23^{11} + 8\cdot 23^{12} +O\left(23^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 20 + 18\cdot 23 + 2\cdot 23^{2} + 16\cdot 23^{3} + 5\cdot 23^{4} + 16\cdot 23^{5} + 4\cdot 23^{6} + 16\cdot 23^{7} + 18\cdot 23^{8} + 11\cdot 23^{10} + 14\cdot 23^{11} + 4\cdot 23^{12} +O\left(23^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 9 a^{2} + 21 a + 8 + \left(9 a^{2} + 13 a + 8\right)\cdot 23 + \left(10 a^{2} + 5 a + 18\right)\cdot 23^{2} + \left(3 a^{2} + a + 9\right)\cdot 23^{3} + \left(11 a + 18\right)\cdot 23^{4} + \left(8 a^{2} + 14 a + 6\right)\cdot 23^{5} + \left(9 a^{2} + 21\right)\cdot 23^{6} + \left(12 a^{2} + 2 a + 21\right)\cdot 23^{7} + \left(10 a^{2} + 10 a + 19\right)\cdot 23^{8} + \left(9 a^{2} + 19 a + 10\right)\cdot 23^{9} + \left(18 a^{2} + 7 a + 21\right)\cdot 23^{10} + \left(10 a^{2} + 14 a + 18\right)\cdot 23^{11} + \left(3 a^{2} + 9 a + 14\right)\cdot 23^{12} +O\left(23^{ 13 }\right)$
$r_{ 7 }$ $=$ $ 22 a^{2} + 19 a + 10 + \left(18 a^{2} + 21 a + 13\right)\cdot 23 + \left(3 a^{2} + 19 a + 9\right)\cdot 23^{2} + \left(13 a^{2} + 21 a + 7\right)\cdot 23^{3} + \left(7 a^{2} + 5\right)\cdot 23^{4} + \left(13 a^{2} + 21 a + 6\right)\cdot 23^{5} + \left(12 a^{2} + 15 a + 10\right)\cdot 23^{6} + \left(22 a^{2} + 18 a + 12\right)\cdot 23^{7} + \left(2 a^{2} + 5 a + 17\right)\cdot 23^{8} + \left(7 a^{2} + 8 a + 7\right)\cdot 23^{9} + \left(14 a^{2} + 12 a + 8\right)\cdot 23^{10} + \left(4 a^{2} + 16 a + 18\right)\cdot 23^{11} + \left(a^{2} + 16 a + 11\right)\cdot 23^{12} +O\left(23^{ 13 }\right)$
$r_{ 8 }$ $=$ $ 15 a^{2} + 6 a + 16 + \left(17 a^{2} + 10 a + 11\right)\cdot 23 + \left(8 a^{2} + 20 a + 8\right)\cdot 23^{2} + \left(6 a^{2} + 22 a + 21\right)\cdot 23^{3} + \left(15 a^{2} + 10 a + 7\right)\cdot 23^{4} + \left(a^{2} + 10 a + 21\right)\cdot 23^{5} + \left(a^{2} + 6 a + 17\right)\cdot 23^{6} + \left(11 a^{2} + 2 a + 4\right)\cdot 23^{7} + \left(9 a^{2} + 7 a + 3\right)\cdot 23^{8} + \left(6 a^{2} + 18 a + 22\right)\cdot 23^{9} + \left(13 a^{2} + 2 a + 6\right)\cdot 23^{10} + \left(7 a^{2} + 15 a + 22\right)\cdot 23^{11} + \left(18 a^{2} + 19 a + 3\right)\cdot 23^{12} +O\left(23^{ 13 }\right)$
$r_{ 9 }$ $=$ $ 10 a^{2} + 15 a + 8 + \left(14 a^{2} + 4 a + 22\right)\cdot 23 + \left(6 a^{2} + 9 a + 19\right)\cdot 23^{2} + \left(11 a^{2} + 4 a + 18\right)\cdot 23^{3} + \left(20 a^{2} + 20 a + 19\right)\cdot 23^{4} + \left(5 a^{2} + 10 a + 19\right)\cdot 23^{5} + \left(a + 11\right)\cdot 23^{6} + \left(17 a^{2} + 13 a + 4\right)\cdot 23^{7} + \left(13 a^{2} + 6 a + 1\right)\cdot 23^{8} + \left(3 a^{2} + 6 a + 17\right)\cdot 23^{9} + \left(5 a^{2} + 14 a + 22\right)\cdot 23^{10} + \left(8 a^{2} + 20 a + 4\right)\cdot 23^{11} + \left(10 a^{2} + 4 a + 7\right)\cdot 23^{12} +O\left(23^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,9,2)(3,4,5)(6,7,8)$
$(3,8)(4,6)(5,7)$
$(1,7,4)(2,6,3)(5,9,8)$
$(3,5,4)(6,7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$9$$2$$(1,3)(2,5)(4,9)$$-1$
$1$$3$$(1,9,2)(3,4,5)(6,7,8)$$-3 \zeta_{3} - 3$
$1$$3$$(1,2,9)(3,5,4)(6,8,7)$$3 \zeta_{3}$
$6$$3$$(1,7,4)(2,6,3)(5,9,8)$$0$
$6$$3$$(1,8,4)(2,7,3)(5,9,6)$$0$
$6$$3$$(1,6,4)(2,8,3)(5,9,7)$$0$
$6$$3$$(3,5,4)(6,7,8)$$0$
$9$$6$$(1,5,9,3,2,4)(6,8,7)$$-\zeta_{3}$
$9$$6$$(1,4,2,3,9,5)(6,7,8)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.