Properties

Label 3.5e2_83e2.18t24.1c2
Dimension 3
Group $(C_3^2:C_3):C_2$
Conductor $ 5^{2} \cdot 83^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$(C_3^2:C_3):C_2$
Conductor:$172225= 5^{2} \cdot 83^{2} $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} + 7 x^{6} - 4 x^{5} - 5 x^{4} + 11 x^{3} - 6 x^{2} - 8 x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 18T24
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 15.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ 3 + 3\cdot 17 + 10\cdot 17^{2} + 3\cdot 17^{3} + 9\cdot 17^{6} + 5\cdot 17^{7} + 14\cdot 17^{8} + 10\cdot 17^{9} + 11\cdot 17^{10} + 5\cdot 17^{11} + 15\cdot 17^{12} + 8\cdot 17^{13} + 6\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 2 }$ $=$ $ 16 a^{2} + 11 a + 11 + \left(15 a^{2} + 11 a + 10\right)\cdot 17 + \left(15 a^{2} + 11 a + 10\right)\cdot 17^{2} + \left(5 a^{2} + 12 a + 9\right)\cdot 17^{3} + \left(12 a^{2} + 5 a + 2\right)\cdot 17^{4} + \left(14 a^{2} + 6 a + 4\right)\cdot 17^{5} + \left(9 a^{2} + 14 a + 12\right)\cdot 17^{6} + \left(3 a^{2} + 10 a + 13\right)\cdot 17^{7} + \left(3 a^{2} + 16 a + 7\right)\cdot 17^{8} + \left(7 a^{2} + 5 a + 10\right)\cdot 17^{9} + \left(7 a^{2} + 8 a + 10\right)\cdot 17^{10} + \left(9 a^{2} + 6 a\right)\cdot 17^{11} + \left(4 a^{2} + 11 a + 3\right)\cdot 17^{12} + \left(11 a^{2} + a + 13\right)\cdot 17^{13} + \left(9 a^{2} + 11 a\right)\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 3 }$ $=$ $ 3 a^{2} + 7 a + 8 + \left(2 a^{2} + 16 a + 1\right)\cdot 17 + \left(10 a^{2} + a + 1\right)\cdot 17^{2} + \left(6 a^{2} + a + 10\right)\cdot 17^{3} + \left(9 a^{2} + 4 a\right)\cdot 17^{4} + \left(14 a^{2} + 10 a + 4\right)\cdot 17^{5} + \left(16 a^{2} + 16 a + 11\right)\cdot 17^{6} + \left(11 a^{2} + 11 a + 13\right)\cdot 17^{7} + \left(3 a + 11\right)\cdot 17^{8} + \left(8 a^{2} + 10 a + 16\right)\cdot 17^{9} + \left(7 a^{2} + 10 a + 4\right)\cdot 17^{10} + 2 a\cdot 17^{11} + \left(16 a^{2} + 2 a + 5\right)\cdot 17^{12} + \left(2 a^{2} + 13\right)\cdot 17^{13} + \left(9 a^{2} + 13 a + 11\right)\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 4 }$ $=$ $ 8 + 7\cdot 17 + 2\cdot 17^{2} + 3\cdot 17^{3} + 8\cdot 17^{4} + 6\cdot 17^{5} + 11\cdot 17^{6} + 2\cdot 17^{7} + 13\cdot 17^{8} + 13\cdot 17^{9} + 7\cdot 17^{10} + 6\cdot 17^{11} + 15\cdot 17^{12} + 9\cdot 17^{13} + 12\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 5 }$ $=$ $ 5 a^{2} + a + 15 + \left(4 a^{2} + 16 a + 2\right)\cdot 17 + \left(3 a^{2} + 2\right)\cdot 17^{2} + \left(10 a^{2} + 11 a + 1\right)\cdot 17^{3} + \left(15 a^{2} + 9 a + 16\right)\cdot 17^{4} + \left(5 a^{2} + 8 a + 3\right)\cdot 17^{5} + \left(6 a^{2} + 9 a + 4\right)\cdot 17^{6} + \left(12 a^{2} + 2 a + 8\right)\cdot 17^{7} + \left(15 a^{2} + 4 a + 10\right)\cdot 17^{8} + \left(12 a^{2} + 3 a + 8\right)\cdot 17^{9} + \left(7 a^{2} + 4 a + 16\right)\cdot 17^{10} + \left(12 a^{2} + 13\right)\cdot 17^{11} + \left(7 a^{2} + 5 a + 10\right)\cdot 17^{12} + \left(6 a^{2} + 13 a + 15\right)\cdot 17^{13} + \left(12 a^{2} + 13\right)\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 6 }$ $=$ $ 7 + 6\cdot 17 + 4\cdot 17^{2} + 10\cdot 17^{3} + 8\cdot 17^{4} + 10\cdot 17^{5} + 13\cdot 17^{6} + 8\cdot 17^{7} + 6\cdot 17^{8} + 9\cdot 17^{9} + 14\cdot 17^{10} + 4\cdot 17^{11} + 3\cdot 17^{12} + 15\cdot 17^{13} + 14\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 7 }$ $=$ $ 7 a^{2} + 6 a + 5 + \left(10 a^{2} + 15 a + 1\right)\cdot 17 + \left(a + 6\right)\cdot 17^{2} + \left(a^{2} + 5 a + 6\right)\cdot 17^{3} + \left(5 a^{2} + 6 a + 3\right)\cdot 17^{4} + 12 a\cdot 17^{5} + \left(15 a^{2} + a + 10\right)\cdot 17^{6} + \left(14 a^{2} + 16 a + 15\right)\cdot 17^{7} + \left(2 a^{2} + 5 a + 1\right)\cdot 17^{8} + \left(14 a^{2} + 9 a + 15\right)\cdot 17^{9} + \left(4 a^{2} + 3 a + 8\right)\cdot 17^{10} + \left(6 a^{2} + 16 a + 15\right)\cdot 17^{11} + \left(4 a^{2} + 13 a + 2\right)\cdot 17^{12} + 8 a\cdot 17^{13} + \left(4 a^{2} + 14\right)\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 8 }$ $=$ $ 5 a^{2} + 10 a + 15 + \left(2 a^{2} + 2 a + 12\right)\cdot 17 + \left(13 a^{2} + 14 a + 8\right)\cdot 17^{2} + \left(5 a^{2} + 9\right)\cdot 17^{3} + \left(13 a^{2} + a + 14\right)\cdot 17^{4} + \left(10 a^{2} + 13 a + 12\right)\cdot 17^{5} + \left(12 a^{2} + 5 a + 2\right)\cdot 17^{6} + \left(6 a^{2} + 15 a + 10\right)\cdot 17^{7} + \left(15 a^{2} + 6 a + 4\right)\cdot 17^{8} + \left(6 a^{2} + 4 a + 10\right)\cdot 17^{9} + \left(4 a^{2} + 9 a + 8\right)\cdot 17^{10} + \left(15 a^{2} + 4\right)\cdot 17^{11} + \left(4 a^{2} + 15 a + 3\right)\cdot 17^{12} + \left(10 a^{2} + 11 a + 1\right)\cdot 17^{13} + \left(15 a + 6\right)\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 9 }$ $=$ $ 15 a^{2} + 16 a + 16 + \left(15 a^{2} + 5 a + 4\right)\cdot 17 + \left(7 a^{2} + 3 a + 5\right)\cdot 17^{2} + \left(4 a^{2} + 3 a + 14\right)\cdot 17^{3} + \left(12 a^{2} + 7 a + 13\right)\cdot 17^{4} + \left(4 a^{2} + 8\right)\cdot 17^{5} + \left(7 a^{2} + 3 a + 10\right)\cdot 17^{6} + \left(a^{2} + 11 a + 6\right)\cdot 17^{7} + \left(13 a^{2} + 13 a + 14\right)\cdot 17^{8} + \left(a^{2} + 6\right)\cdot 17^{9} + \left(2 a^{2} + 15 a + 1\right)\cdot 17^{10} + \left(7 a^{2} + 7 a + 16\right)\cdot 17^{11} + \left(13 a^{2} + 3 a + 8\right)\cdot 17^{12} + \left(2 a^{2} + 15 a + 7\right)\cdot 17^{13} + \left(15 a^{2} + 9 a + 4\right)\cdot 17^{14} +O\left(17^{ 15 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(2,3,9)(5,8,7)$
$(1,6,4)(2,3,9)(5,7,8)$
$(1,5,2)(3,6,7)(4,8,9)$
$(2,8)(3,5)(7,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$9$$2$$(1,9)(2,6)(3,4)$$-1$
$1$$3$$(1,6,4)(2,3,9)(5,7,8)$$-3 \zeta_{3} - 3$
$1$$3$$(1,4,6)(2,9,3)(5,8,7)$$3 \zeta_{3}$
$6$$3$$(1,5,2)(3,6,7)(4,8,9)$$0$
$6$$3$$(1,8,2)(3,6,5)(4,7,9)$$0$
$6$$3$$(2,3,9)(5,8,7)$$0$
$6$$3$$(1,2,7)(3,8,6)(4,9,5)$$0$
$9$$6$$(1,3,6,9,4,2)(5,8,7)$$-\zeta_{3}$
$9$$6$$(1,2,4,9,6,3)(5,7,8)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.