Properties

Label 3.5e2_7_131e2.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 5^{2} \cdot 7 \cdot 131^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$3003175= 5^{2} \cdot 7 \cdot 131^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 3 x^{4} + 3 x^{3} + 3 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 9\cdot 23 + 19\cdot 23^{2} + 19\cdot 23^{3} + 13\cdot 23^{4} + 2\cdot 23^{5} + 15\cdot 23^{7} + 8\cdot 23^{8} + 2\cdot 23^{9} +O\left(23^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 11 + \left(9 a + 9\right)\cdot 23 + \left(3 a + 10\right)\cdot 23^{2} + \left(16 a + 16\right)\cdot 23^{3} + \left(8 a + 2\right)\cdot 23^{4} + \left(12 a + 18\right)\cdot 23^{5} + \left(17 a + 5\right)\cdot 23^{6} + \left(22 a + 17\right)\cdot 23^{7} + \left(10 a + 9\right)\cdot 23^{8} + \left(15 a + 6\right)\cdot 23^{9} +O\left(23^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 9 + \left(8 a + 5\right)\cdot 23 + 15\cdot 23^{2} + \left(17 a + 5\right)\cdot 23^{3} + \left(5 a + 3\right)\cdot 23^{4} + \left(12 a + 19\right)\cdot 23^{5} + \left(12 a + 20\right)\cdot 23^{6} + \left(20 a + 9\right)\cdot 23^{7} + \left(3 a + 22\right)\cdot 23^{8} + \left(18 a + 10\right)\cdot 23^{9} +O\left(23^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 17 a + 21 + \left(14 a + 15\right)\cdot 23 + \left(22 a + 7\right)\cdot 23^{2} + \left(5 a + 16\right)\cdot 23^{3} + \left(17 a + 20\right)\cdot 23^{4} + \left(10 a + 14\right)\cdot 23^{5} + \left(10 a + 10\right)\cdot 23^{6} + \left(2 a + 15\right)\cdot 23^{7} + \left(19 a + 9\right)\cdot 23^{8} + \left(4 a + 20\right)\cdot 23^{9} +O\left(23^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 15 + \left(13 a + 2\right)\cdot 23 + \left(19 a + 8\right)\cdot 23^{2} + \left(6 a + 22\right)\cdot 23^{3} + \left(14 a + 3\right)\cdot 23^{4} + \left(10 a + 11\right)\cdot 23^{5} + \left(5 a + 5\right)\cdot 23^{6} + 22\cdot 23^{7} + \left(12 a + 8\right)\cdot 23^{8} + \left(7 a + 3\right)\cdot 23^{9} +O\left(23^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 12 + 3\cdot 23 + 8\cdot 23^{2} + 11\cdot 23^{3} + 23^{4} + 3\cdot 23^{5} + 3\cdot 23^{6} + 12\cdot 23^{7} + 9\cdot 23^{8} + 2\cdot 23^{9} +O\left(23^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)$
$(1,2)(5,6)$
$(1,2,3)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,6)(2,5)(3,4)$ $-3$
$3$ $2$ $(1,6)$ $1$
$3$ $2$ $(1,6)(2,5)$ $-1$
$6$ $2$ $(2,3)(4,5)$ $-1$
$6$ $2$ $(1,6)(2,3)(4,5)$ $1$
$8$ $3$ $(1,2,3)(4,6,5)$ $0$
$6$ $4$ $(1,5,6,2)$ $-1$
$6$ $4$ $(1,6)(2,4,5,3)$ $1$
$8$ $6$ $(1,5,4,6,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.