Properties

Label 3.5e2_73e2.6t8.1
Dimension 3
Group $S_4$
Conductor $ 5^{2} \cdot 73^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$133225= 5^{2} \cdot 73^{2} $
Artin number field: Splitting field of $f= x^{4} + x^{2} - x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 8 + 14\cdot 67 + 13\cdot 67^{2} + 10\cdot 67^{3} + 48\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 + 11\cdot 67 + 10\cdot 67^{2} + 42\cdot 67^{3} + 49\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 44 + 60\cdot 67 + 55\cdot 67^{2} + 62\cdot 67^{3} + 39\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 61 + 47\cdot 67 + 54\cdot 67^{2} + 18\cdot 67^{3} + 63\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.