Properties

Label 3.5e2_47e2.6t8.2c1
Dimension 3
Group $S_4$
Conductor $ 5^{2} \cdot 47^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$55225= 5^{2} \cdot 47^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} + x^{2} + 14 x + 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 401 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 218 + 343\cdot 401 + 98\cdot 401^{2} + 4\cdot 401^{3} + 370\cdot 401^{4} +O\left(401^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 231 + 207\cdot 401 + 31\cdot 401^{2} + 14\cdot 401^{3} + 121\cdot 401^{4} +O\left(401^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 366 + 226\cdot 401 + 137\cdot 401^{2} + 34\cdot 401^{3} + 399\cdot 401^{4} +O\left(401^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 389 + 23\cdot 401 + 133\cdot 401^{2} + 348\cdot 401^{3} + 312\cdot 401^{4} +O\left(401^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.