Properties

Label 3.5e2_23e3.4t5.1
Dimension 3
Group $S_4$
Conductor $ 5^{2} \cdot 23^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$304175= 5^{2} \cdot 23^{3} $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 9 x^{2} + 10 x - 15 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 7 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 7 }$: $ x^{2} + 6 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + 6 + 7 + \left(4 a + 1\right)\cdot 7^{2} + \left(4 a + 2\right)\cdot 7^{3} + \left(2 a + 3\right)\cdot 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 + 2\cdot 7^{2} + 3\cdot 7^{3} + 5\cdot 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 6 + 4\cdot 7 + 5\cdot 7^{2} + 5\cdot 7^{3} + 3\cdot 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 1 + 6 a\cdot 7 + \left(2 a + 5\right)\cdot 7^{2} + \left(2 a + 2\right)\cdot 7^{3} + \left(4 a + 1\right)\cdot 7^{4} +O\left(7^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.