Properties

Label 3.5e2_17e2_23e2.6t8.2
Dimension 3
Group $S_4$
Conductor $ 5^{2} \cdot 17^{2} \cdot 23^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$3822025= 5^{2} \cdot 17^{2} \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - x^{2} - 10 x + 15 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 167 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 47 + 154\cdot 167 + 133\cdot 167^{2} + 59\cdot 167^{3} + 110\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 54 + 127\cdot 167 + 65\cdot 167^{2} + 153\cdot 167^{3} + 148\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 89 + 150\cdot 167 + 138\cdot 167^{2} + 35\cdot 167^{3} + 150\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 145 + 68\cdot 167 + 162\cdot 167^{2} + 84\cdot 167^{3} + 91\cdot 167^{4} +O\left(167^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.