Properties

Label 3.5e2_157e2.12t33.1c1
Dimension 3
Group $A_5$
Conductor $ 5^{2} \cdot 157^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$616225= 5^{2} \cdot 157^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 5 x^{3} + 6 x^{2} + 13 x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 421 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 70 + 261\cdot 421 + 276\cdot 421^{2} + 162\cdot 421^{3} + 340\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 247 + 163\cdot 421 + 319\cdot 421^{2} + 234\cdot 421^{3} + 220\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 305 + 12\cdot 421 + 124\cdot 421^{2} + 78\cdot 421^{3} + 343\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 320 + 102\cdot 421 + 21\cdot 421^{2} + 198\cdot 421^{3} + 278\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 322 + 301\cdot 421 + 100\cdot 421^{2} + 168\cdot 421^{3} + 80\cdot 421^{4} +O\left(421^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$3$
$15$$2$$(1,2)(3,4)$$-1$
$20$$3$$(1,2,3)$$0$
$12$$5$$(1,2,3,4,5)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
$12$$5$$(1,3,4,5,2)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
The blue line marks the conjugacy class containing complex conjugation.