Properties

Label 3.5e2_13e2.4t4.2c1
Dimension 3
Group $A_4$
Conductor $ 5^{2} \cdot 13^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4$
Conductor:$4225= 5^{2} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - x^{4} - 3 x^{3} - x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 20 + \left(13 a + 11\right)\cdot 31 + \left(26 a + 11\right)\cdot 31^{2} + \left(2 a + 15\right)\cdot 31^{3} + \left(a + 18\right)\cdot 31^{4} + \left(25 a + 10\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 19 + 25\cdot 31 + 25\cdot 31^{2} + 21\cdot 31^{3} + 24\cdot 31^{4} + 30\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 8 a + 3 + 29 a\cdot 31 + \left(11 a + 15\right)\cdot 31^{2} + \left(7 a + 9\right)\cdot 31^{3} + \left(13 a + 20\right)\cdot 31^{4} + \left(16 a + 22\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 23 a + 19 + \left(a + 19\right)\cdot 31 + \left(19 a + 9\right)\cdot 31^{2} + \left(23 a + 12\right)\cdot 31^{3} + \left(17 a + 8\right)\cdot 31^{4} + \left(14 a + 11\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 18 + 10\cdot 31 + 11\cdot 31^{2} + 8\cdot 31^{3} + 3\cdot 31^{4} + 20\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 18 a + 15 + \left(17 a + 25\right)\cdot 31 + \left(4 a + 19\right)\cdot 31^{2} + \left(28 a + 25\right)\cdot 31^{3} + \left(29 a + 17\right)\cdot 31^{4} + \left(5 a + 28\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)(3,4)$
$(2,5)(3,4)$
$(1,2,4)(3,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,6)(3,4)$$-1$
$4$$3$$(1,2,4)(3,6,5)$$0$
$4$$3$$(1,4,2)(3,5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.