Properties

Label 3.5e2_127.4t5.1
Dimension 3
Group $S_4$
Conductor $ 5^{2} \cdot 127 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$3175= 5^{2} \cdot 127 $
Artin number field: Splitting field of $f= x^{4} - x^{2} - 3 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 149 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 64 + 126\cdot 149 + 13\cdot 149^{2} + 119\cdot 149^{3} + 80\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 69 + 37\cdot 149 + 86\cdot 149^{2} + 43\cdot 149^{3} + 117\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 73 + 54\cdot 149 + 52\cdot 149^{2} + 106\cdot 149^{3} + 126\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 92 + 79\cdot 149 + 145\cdot 149^{2} + 28\cdot 149^{3} + 122\cdot 149^{4} +O\left(149^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.