Properties

Label 3.5e2_11e2_79e2.6t8.1
Dimension 3
Group $S_4$
Conductor $ 5^{2} \cdot 11^{2} \cdot 79^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$18879025= 5^{2} \cdot 11^{2} \cdot 79^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} + x^{2} - 2 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 337 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 86 + 230\cdot 337 + 58\cdot 337^{2} + 3\cdot 337^{3} + 327\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 154 + 302\cdot 337 + 331\cdot 337^{2} + 155\cdot 337^{3} + 58\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 205 + 240\cdot 337 + 96\cdot 337^{2} + 168\cdot 337^{3} + 325\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 230 + 237\cdot 337 + 186\cdot 337^{2} + 9\cdot 337^{3} + 300\cdot 337^{4} +O\left(337^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.