Properties

Label 3.5_7e2_19e2.6t6.1c1
Dimension 3
Group $A_4\times C_2$
Conductor $ 5 \cdot 7^{2} \cdot 19^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$88445= 5 \cdot 7^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{4} - 43 x^{2} - 20 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 27 a + 26 + \left(75 a + 15\right)\cdot 79 + \left(36 a + 19\right)\cdot 79^{2} + \left(10 a + 13\right)\cdot 79^{3} + \left(26 a + 71\right)\cdot 79^{4} + \left(45 a + 29\right)\cdot 79^{5} + \left(42 a + 1\right)\cdot 79^{6} + \left(22 a + 10\right)\cdot 79^{7} + \left(46 a + 67\right)\cdot 79^{8} + \left(64 a + 69\right)\cdot 79^{9} +O\left(79^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 58 a + 50 + \left(38 a + 9\right)\cdot 79 + \left(22 a + 8\right)\cdot 79^{2} + \left(71 a + 15\right)\cdot 79^{3} + \left(9 a + 70\right)\cdot 79^{4} + \left(16 a + 75\right)\cdot 79^{5} + \left(39 a + 27\right)\cdot 79^{6} + \left(8 a + 15\right)\cdot 79^{7} + \left(71 a + 8\right)\cdot 79^{8} + \left(38 a + 16\right)\cdot 79^{9} +O\left(79^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 39 + 68\cdot 79 + 71\cdot 79^{2} + 28\cdot 79^{3} + 28\cdot 79^{4} + 15\cdot 79^{5} + 75\cdot 79^{6} + 57\cdot 79^{7} + 6\cdot 79^{8} + 68\cdot 79^{9} +O\left(79^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 52 a + 53 + \left(3 a + 63\right)\cdot 79 + \left(42 a + 59\right)\cdot 79^{2} + \left(68 a + 65\right)\cdot 79^{3} + \left(52 a + 7\right)\cdot 79^{4} + \left(33 a + 49\right)\cdot 79^{5} + \left(36 a + 77\right)\cdot 79^{6} + \left(56 a + 68\right)\cdot 79^{7} + \left(32 a + 11\right)\cdot 79^{8} + \left(14 a + 9\right)\cdot 79^{9} +O\left(79^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 29 + \left(40 a + 69\right)\cdot 79 + \left(56 a + 70\right)\cdot 79^{2} + \left(7 a + 63\right)\cdot 79^{3} + \left(69 a + 8\right)\cdot 79^{4} + \left(62 a + 3\right)\cdot 79^{5} + \left(39 a + 51\right)\cdot 79^{6} + \left(70 a + 63\right)\cdot 79^{7} + \left(7 a + 70\right)\cdot 79^{8} + \left(40 a + 62\right)\cdot 79^{9} +O\left(79^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 40 + 10\cdot 79 + 7\cdot 79^{2} + 50\cdot 79^{3} + 50\cdot 79^{4} + 63\cdot 79^{5} + 3\cdot 79^{6} + 21\cdot 79^{7} + 72\cdot 79^{8} + 10\cdot 79^{9} +O\left(79^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)$
$(2,5)$
$(1,3,2)(4,6,5)$
$(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,5)(3,6)$$-3$
$3$$2$$(2,5)$$1$
$3$$2$$(1,4)(2,5)$$-1$
$4$$3$$(1,3,2)(4,6,5)$$0$
$4$$3$$(1,2,3)(4,5,6)$$0$
$4$$6$$(1,3,2,4,6,5)$$0$
$4$$6$$(1,5,6,4,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.