Properties

Label 3.5_67e2.6t6.1
Dimension 3
Group $A_4\times C_2$
Conductor $ 5 \cdot 67^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$22445= 5 \cdot 67^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{4} - 22 x^{2} - 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 7 + 34\cdot 59 + 19\cdot 59^{2} + 12\cdot 59^{3} + 32\cdot 59^{4} + 25\cdot 59^{5} + 55\cdot 59^{6} + 42\cdot 59^{7} + 4\cdot 59^{8} +O\left(59^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 11 a + 24 + \left(14 a + 57\right)\cdot 59 + \left(28 a + 51\right)\cdot 59^{2} + \left(38 a + 53\right)\cdot 59^{3} + \left(51 a + 22\right)\cdot 59^{4} + \left(36 a + 7\right)\cdot 59^{5} + \left(45 a + 25\right)\cdot 59^{6} + \left(29 a + 37\right)\cdot 59^{7} + \left(a + 43\right)\cdot 59^{8} +O\left(59^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 55 a + 2 + \left(16 a + 19\right)\cdot 59 + \left(47 a + 14\right)\cdot 59^{2} + \left(52 a + 56\right)\cdot 59^{3} + \left(38 a + 6\right)\cdot 59^{4} + \left(28 a + 5\right)\cdot 59^{5} + \left(13 a + 37\right)\cdot 59^{6} + \left(35 a + 18\right)\cdot 59^{7} + \left(7 a + 43\right)\cdot 59^{8} +O\left(59^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 52 + 24\cdot 59 + 39\cdot 59^{2} + 46\cdot 59^{3} + 26\cdot 59^{4} + 33\cdot 59^{5} + 3\cdot 59^{6} + 16\cdot 59^{7} + 54\cdot 59^{8} +O\left(59^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 48 a + 35 + \left(44 a + 1\right)\cdot 59 + \left(30 a + 7\right)\cdot 59^{2} + \left(20 a + 5\right)\cdot 59^{3} + \left(7 a + 36\right)\cdot 59^{4} + \left(22 a + 51\right)\cdot 59^{5} + \left(13 a + 33\right)\cdot 59^{6} + \left(29 a + 21\right)\cdot 59^{7} + \left(57 a + 15\right)\cdot 59^{8} +O\left(59^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 57 + \left(42 a + 39\right)\cdot 59 + \left(11 a + 44\right)\cdot 59^{2} + \left(6 a + 2\right)\cdot 59^{3} + \left(20 a + 52\right)\cdot 59^{4} + \left(30 a + 53\right)\cdot 59^{5} + \left(45 a + 21\right)\cdot 59^{6} + \left(23 a + 40\right)\cdot 59^{7} + \left(51 a + 15\right)\cdot 59^{8} +O\left(59^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)$
$(2,5)$
$(1,3,2)(4,6,5)$
$(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-3$
$3$ $2$ $(1,4)$ $1$
$3$ $2$ $(1,4)(2,5)$ $-1$
$4$ $3$ $(1,3,2)(4,6,5)$ $0$
$4$ $3$ $(1,2,3)(4,5,6)$ $0$
$4$ $6$ $(1,6,5,4,3,2)$ $0$
$4$ $6$ $(1,2,3,4,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.