Properties

Label 3.5_197e2.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 5 \cdot 197^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$194045= 5 \cdot 197^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 10 x^{4} - 15 x^{3} + 17 x^{2} - 10 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 5 + \left(6 a + 1\right)\cdot 29 + \left(15 a + 23\right)\cdot 29^{2} + 8 a\cdot 29^{3} + \left(a + 1\right)\cdot 29^{4} + \left(10 a + 19\right)\cdot 29^{5} + \left(5 a + 20\right)\cdot 29^{6} + 18 a\cdot 29^{7} + \left(6 a + 7\right)\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 11 a + 2 + \left(18 a + 3\right)\cdot 29 + \left(20 a + 1\right)\cdot 29^{2} + 15 a\cdot 29^{3} + 20 a\cdot 29^{4} + \left(4 a + 13\right)\cdot 29^{5} + \left(10 a + 20\right)\cdot 29^{6} + \left(23 a + 4\right)\cdot 29^{7} + \left(8 a + 4\right)\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 7 + 5\cdot 29 + 20\cdot 29^{2} + 16\cdot 29^{3} + 28\cdot 29^{4} + 12\cdot 29^{5} + 28\cdot 29^{6} + 5\cdot 29^{7} +O\left(29^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 23 + 23\cdot 29 + 8\cdot 29^{2} + 12\cdot 29^{3} + 16\cdot 29^{5} + 23\cdot 29^{7} + 28\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 18 a + 28 + \left(10 a + 25\right)\cdot 29 + \left(8 a + 27\right)\cdot 29^{2} + \left(13 a + 28\right)\cdot 29^{3} + \left(8 a + 28\right)\cdot 29^{4} + \left(24 a + 15\right)\cdot 29^{5} + \left(18 a + 8\right)\cdot 29^{6} + \left(5 a + 24\right)\cdot 29^{7} + \left(20 a + 24\right)\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 25 a + 25 + \left(22 a + 27\right)\cdot 29 + \left(13 a + 5\right)\cdot 29^{2} + \left(20 a + 28\right)\cdot 29^{3} + \left(27 a + 27\right)\cdot 29^{4} + \left(18 a + 9\right)\cdot 29^{5} + \left(23 a + 8\right)\cdot 29^{6} + \left(10 a + 28\right)\cdot 29^{7} + \left(22 a + 21\right)\cdot 29^{8} +O\left(29^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(4,6)$
$(1,2,3)(4,6,5)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,6)(2,5)(3,4)$$-3$
$3$$2$$(1,6)(3,4)$$-1$
$3$$2$$(1,6)$$1$
$6$$2$$(1,3)(4,6)$$1$
$6$$2$$(1,6)(2,3)(4,5)$$-1$
$8$$3$$(1,2,3)(4,6,5)$$0$
$6$$4$$(1,4,6,3)$$1$
$6$$4$$(1,4,6,3)(2,5)$$-1$
$8$$6$$(1,4,5,6,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.