Properties

Label 3.5_17_23e2.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 5 \cdot 17 \cdot 23^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$44965= 5 \cdot 17 \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{4} - 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.5_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 36 + \left(36 a + 22\right)\cdot 37 + 30\cdot 37^{2} + \left(8 a + 22\right)\cdot 37^{3} + \left(36 a + 17\right)\cdot 37^{4} + \left(20 a + 6\right)\cdot 37^{5} + \left(26 a + 32\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 30 a + 27 + 12\cdot 37 + \left(36 a + 35\right)\cdot 37^{2} + \left(28 a + 16\right)\cdot 37^{3} + 6\cdot 37^{4} + \left(16 a + 17\right)\cdot 37^{5} + \left(10 a + 6\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 15 + 32\cdot 37 + 4\cdot 37^{2} + 22\cdot 37^{3} + 2\cdot 37^{4} + 4\cdot 37^{5} + 8\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 35 a + 3 + \left(31 a + 24\right)\cdot 37 + \left(16 a + 11\right)\cdot 37^{2} + \left(15 a + 20\right)\cdot 37^{3} + \left(28 a + 7\right)\cdot 37^{4} + \left(11 a + 26\right)\cdot 37^{5} + \left(11 a + 13\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 35 + 12\cdot 37 + 18\cdot 37^{2} + 8\cdot 37^{4} + 12\cdot 37^{5} + 3\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 32 + \left(5 a + 5\right)\cdot 37 + \left(20 a + 10\right)\cdot 37^{2} + \left(21 a + 28\right)\cdot 37^{3} + \left(8 a + 31\right)\cdot 37^{4} + \left(25 a + 7\right)\cdot 37^{5} + \left(25 a + 10\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)(4,6,5)$
$(1,3)(4,5)$
$(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,6)(3,5)$$-3$
$3$$2$$(1,4)(3,5)$$-1$
$3$$2$$(1,4)$$1$
$6$$2$$(1,3)(4,5)$$-1$
$6$$2$$(1,4)(2,3)(5,6)$$1$
$8$$3$$(1,2,3)(4,6,5)$$0$
$6$$4$$(1,5,4,3)$$-1$
$6$$4$$(1,5,4,3)(2,6)$$1$
$8$$6$$(1,5,6,4,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.