Properties

Label 3.5_17_23.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 5 \cdot 17 \cdot 23 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$1955= 5 \cdot 17 \cdot 23 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 3 x^{4} + 2 x^{3} - 3 x^{2} + 27 x + 27 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 26 + 6\cdot 43 + 35\cdot 43^{2} + 29\cdot 43^{3} + 15\cdot 43^{4} + 40\cdot 43^{5} + 21\cdot 43^{6} + 42\cdot 43^{7} + 13\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 9 + \left(18 a + 34\right)\cdot 43 + \left(20 a + 24\right)\cdot 43^{2} + \left(2 a + 41\right)\cdot 43^{3} + \left(14 a + 11\right)\cdot 43^{4} + \left(24 a + 35\right)\cdot 43^{5} + \left(36 a + 26\right)\cdot 43^{6} + \left(41 a + 19\right)\cdot 43^{7} + \left(7 a + 37\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 37 a + 15 + \left(24 a + 3\right)\cdot 43 + \left(22 a + 27\right)\cdot 43^{2} + \left(40 a + 23\right)\cdot 43^{3} + \left(28 a + 23\right)\cdot 43^{4} + \left(18 a + 2\right)\cdot 43^{5} + \left(6 a + 39\right)\cdot 43^{6} + \left(a + 24\right)\cdot 43^{7} + \left(35 a + 3\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 3 + \left(17 a + 29\right)\cdot 43 + \left(7 a + 37\right)\cdot 43^{2} + \left(30 a + 14\right)\cdot 43^{3} + \left(3 a + 6\right)\cdot 43^{4} + \left(17 a + 17\right)\cdot 43^{5} + \left(35 a + 23\right)\cdot 43^{6} + \left(15 a + 40\right)\cdot 43^{7} + \left(9 a + 33\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 21 + 20\cdot 43 + 19\cdot 43^{2} + 24\cdot 43^{3} + 5\cdot 43^{4} + 3\cdot 43^{5} + 19\cdot 43^{6} + 23\cdot 43^{7} + 12\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 32 a + 14 + \left(25 a + 35\right)\cdot 43 + \left(35 a + 27\right)\cdot 43^{2} + \left(12 a + 37\right)\cdot 43^{3} + \left(39 a + 22\right)\cdot 43^{4} + \left(25 a + 30\right)\cdot 43^{5} + \left(7 a + 41\right)\cdot 43^{6} + \left(27 a + 20\right)\cdot 43^{7} + \left(33 a + 27\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(5,6)$
$(1,2,3)(4,6,5)$
$(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,5)(2,4)(3,6)$ $-3$
$3$ $2$ $(2,4)$ $1$
$3$ $2$ $(2,4)(3,6)$ $-1$
$6$ $2$ $(1,3)(5,6)$ $-1$
$6$ $2$ $(1,3)(2,4)(5,6)$ $1$
$8$ $3$ $(1,2,3)(4,6,5)$ $0$
$6$ $4$ $(2,6,4,3)$ $-1$
$6$ $4$ $(1,5)(2,6,4,3)$ $1$
$8$ $6$ $(1,2,6,5,4,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.