Properties

Label 3.5_13e2.6t6.1
Dimension 3
Group $A_4\times C_2$
Conductor $ 5 \cdot 13^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$845= 5 \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + x^{3} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 28 a + 16 + \left(17 a + 24\right)\cdot 31 + \left(17 a + 3\right)\cdot 31^{2} + \left(13 a + 11\right)\cdot 31^{3} + \left(a + 22\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 27 + \left(15 a + 25\right)\cdot 31 + \left(11 a + 14\right)\cdot 31^{2} + 25\cdot 31^{3} + \left(2 a + 14\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 + 7\cdot 31 + 19\cdot 31^{2} + 28\cdot 31^{3} + 29\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 11 + 17\cdot 31 + 11\cdot 31^{2} + 23\cdot 31^{3} + 26\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 22 a + 14 + \left(15 a + 16\right)\cdot 31 + \left(19 a + 22\right)\cdot 31^{2} + \left(30 a + 14\right)\cdot 31^{3} + \left(28 a + 18\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 3 a + 10 + \left(13 a + 1\right)\cdot 31 + \left(13 a + 21\right)\cdot 31^{2} + \left(17 a + 20\right)\cdot 31^{3} + \left(29 a + 11\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)$
$(2,5)$
$(1,2,3)(4,6,5)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,6)(2,5)(3,4)$ $-3$
$3$ $2$ $(1,6)$ $1$
$3$ $2$ $(1,6)(2,5)$ $-1$
$4$ $3$ $(1,2,3)(4,6,5)$ $0$
$4$ $3$ $(1,3,2)(4,5,6)$ $0$
$4$ $6$ $(1,5,4,6,2,3)$ $0$
$4$ $6$ $(1,3,2,6,4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.