Properties

Label 3.5_11e2_79e2.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 5 \cdot 11^{2} \cdot 79^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$3775805= 5 \cdot 11^{2} \cdot 79^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 7 x^{4} + 23 x^{3} - 24 x^{2} + 15 x - 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 61 a + 57 + \left(64 a + 11\right)\cdot 71 + \left(38 a + 65\right)\cdot 71^{2} + \left(22 a + 36\right)\cdot 71^{3} + \left(30 a + 56\right)\cdot 71^{4} + \left(52 a + 11\right)\cdot 71^{5} + \left(13 a + 33\right)\cdot 71^{6} + \left(42 a + 62\right)\cdot 71^{7} + \left(57 a + 34\right)\cdot 71^{8} +O\left(71^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 31 a + 12 + \left(69 a + 46\right)\cdot 71 + \left(13 a + 56\right)\cdot 71^{2} + \left(3 a + 56\right)\cdot 71^{3} + \left(a + 24\right)\cdot 71^{4} + \left(26 a + 49\right)\cdot 71^{5} + \left(35 a + 64\right)\cdot 71^{6} + \left(12 a + 35\right)\cdot 71^{7} + \left(58 a + 47\right)\cdot 71^{8} +O\left(71^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 70 + 35\cdot 71 + 47\cdot 71^{2} + 41\cdot 71^{3} + 41\cdot 71^{4} + 66\cdot 71^{5} + 24\cdot 71^{6} + 11\cdot 71^{7} + 61\cdot 71^{8} +O\left(71^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 37 + \left(6 a + 9\right)\cdot 71 + \left(32 a + 7\right)\cdot 71^{2} + \left(48 a + 43\right)\cdot 71^{3} + \left(40 a + 23\right)\cdot 71^{4} + \left(18 a + 15\right)\cdot 71^{5} + \left(57 a + 8\right)\cdot 71^{6} + \left(28 a + 62\right)\cdot 71^{7} + \left(13 a + 36\right)\cdot 71^{8} +O\left(71^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 40 a + 3 + \left(a + 12\right)\cdot 71 + \left(57 a + 15\right)\cdot 71^{2} + \left(67 a + 49\right)\cdot 71^{3} + \left(69 a + 23\right)\cdot 71^{4} + \left(44 a + 29\right)\cdot 71^{5} + \left(35 a + 38\right)\cdot 71^{6} + \left(58 a + 25\right)\cdot 71^{7} + \left(12 a + 9\right)\cdot 71^{8} +O\left(71^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 36 + 26\cdot 71 + 21\cdot 71^{2} + 56\cdot 71^{3} + 42\cdot 71^{4} + 40\cdot 71^{5} + 43\cdot 71^{6} + 15\cdot 71^{7} + 23\cdot 71^{8} +O\left(71^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(1,5)$
$(1,2,3)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,5)(2,4)(3,6)$$-3$
$3$$2$$(1,5)$$1$
$3$$2$$(1,5)(2,4)$$-1$
$6$$2$$(2,3)(4,6)$$-1$
$6$$2$$(1,5)(2,3)(4,6)$$1$
$8$$3$$(1,2,3)(4,6,5)$$0$
$6$$4$$(1,4,5,2)$$-1$
$6$$4$$(1,5)(2,6,4,3)$$1$
$8$$6$$(1,4,6,5,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.