Properties

Label 3.5_11_23.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 5 \cdot 11 \cdot 23 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$1265= 5 \cdot 11 \cdot 23 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 3 x^{4} - x^{3} + 3 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.5_11_23.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 25 a + 35 + \left(5 a + 22\right)\cdot 43 + \left(41 a + 31\right)\cdot 43^{2} + \left(37 a + 22\right)\cdot 43^{3} + \left(19 a + 31\right)\cdot 43^{4} + \left(25 a + 31\right)\cdot 43^{5} + \left(31 a + 25\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 12 + 28\cdot 43 + 36\cdot 43^{2} + 25\cdot 43^{3} + 28\cdot 43^{4} + 33\cdot 43^{5} +O\left(43^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 17 + \left(37 a + 3\right)\cdot 43 + \left(a + 24\right)\cdot 43^{2} + \left(5 a + 19\right)\cdot 43^{3} + \left(23 a + 13\right)\cdot 43^{4} + \left(17 a + 37\right)\cdot 43^{5} + \left(11 a + 31\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 33 a + 29 + \left(11 a + 27\right)\cdot 43 + \left(20 a + 7\right)\cdot 43^{2} + \left(a + 32\right)\cdot 43^{3} + \left(29 a + 15\right)\cdot 43^{4} + \left(16 a + 3\right)\cdot 43^{5} + \left(19 a + 34\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 18 + 40\cdot 43 + 12\cdot 43^{2} + 15\cdot 43^{3} + 39\cdot 43^{4} + 31\cdot 43^{5} + 42\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 19 + \left(31 a + 6\right)\cdot 43 + \left(22 a + 16\right)\cdot 43^{2} + \left(41 a + 13\right)\cdot 43^{3} + 13 a\cdot 43^{4} + \left(26 a + 34\right)\cdot 43^{5} + \left(23 a + 36\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)$
$(1,2)(5,6)$
$(1,3,2)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,6)(2,5)(3,4)$$-3$
$3$$2$$(1,6)(2,5)$$-1$
$3$$2$$(2,5)$$1$
$6$$2$$(1,2)(5,6)$$1$
$6$$2$$(1,6)(2,3)(4,5)$$-1$
$8$$3$$(1,3,2)(4,5,6)$$0$
$6$$4$$(1,5,6,2)$$1$
$6$$4$$(1,6)(2,4,5,3)$$-1$
$8$$6$$(1,3,2,6,4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.