Properties

Label 3.5_11_23.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 5 \cdot 11 \cdot 23 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$1265= 5 \cdot 11 \cdot 23 $
Artin number field: Splitting field of $f= x^{6} - x^{3} - 23 x - 17 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 31 a + 16 + \left(40 a + 27\right)\cdot 59 + \left(18 a + 33\right)\cdot 59^{2} + \left(7 a + 28\right)\cdot 59^{4} + \left(42 a + 41\right)\cdot 59^{5} + \left(20 a + 17\right)\cdot 59^{6} + \left(12 a + 30\right)\cdot 59^{7} +O\left(59^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 14 + 44\cdot 59 + 10\cdot 59^{2} + 9\cdot 59^{3} + 57\cdot 59^{5} + 28\cdot 59^{6} + 23\cdot 59^{7} +O\left(59^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 28 + 50\cdot 59 + 19\cdot 59^{2} + 54\cdot 59^{3} + 35\cdot 59^{4} + 48\cdot 59^{5} + 43\cdot 59^{6} + 59^{7} +O\left(59^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 35 a + 48 + \left(53 a + 58\right)\cdot 59 + \left(52 a + 50\right)\cdot 59^{2} + \left(20 a + 51\right)\cdot 59^{3} + \left(6 a + 16\right)\cdot 59^{4} + \left(26 a + 55\right)\cdot 59^{5} + \left(34 a + 40\right)\cdot 59^{6} + \left(6 a + 4\right)\cdot 59^{7} +O\left(59^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 24 a + 24 + \left(5 a + 18\right)\cdot 59 + \left(6 a + 50\right)\cdot 59^{2} + \left(38 a + 19\right)\cdot 59^{3} + \left(52 a + 2\right)\cdot 59^{4} + \left(32 a + 16\right)\cdot 59^{5} + \left(24 a + 49\right)\cdot 59^{6} + \left(52 a + 35\right)\cdot 59^{7} +O\left(59^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 28 a + 47 + \left(18 a + 36\right)\cdot 59 + \left(40 a + 11\right)\cdot 59^{2} + \left(58 a + 41\right)\cdot 59^{3} + \left(51 a + 34\right)\cdot 59^{4} + \left(16 a + 17\right)\cdot 59^{5} + \left(38 a + 55\right)\cdot 59^{6} + \left(46 a + 21\right)\cdot 59^{7} +O\left(59^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)$
$(1,2)(3,6)$
$(1,2,4)(3,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,6)(2,3)(4,5)$ $-3$
$3$ $2$ $(1,6)(2,3)$ $-1$
$3$ $2$ $(1,6)$ $1$
$6$ $2$ $(1,2)(3,6)$ $-1$
$6$ $2$ $(1,4)(2,3)(5,6)$ $1$
$8$ $3$ $(1,2,4)(3,5,6)$ $0$
$6$ $4$ $(1,2,6,3)$ $-1$
$6$ $4$ $(1,5,6,4)(2,3)$ $1$
$8$ $6$ $(1,3,5,6,2,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.