Properties

Label 3.592.4t5.a.a
Dimension $3$
Group $S_4$
Conductor $592$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4$
Conductor: \(592\)\(\medspace = 2^{4} \cdot 37 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.592.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: even
Determinant: 1.37.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.0.592.1

Defining polynomial

$f(x)$$=$ \( x^{4} + 2x^{2} - 2x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 139 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 14 + 17\cdot 139 + 3\cdot 139^{2} + 130\cdot 139^{3} + 41\cdot 139^{4} +O(139^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 62 + 45\cdot 139 + 86\cdot 139^{2} + 14\cdot 139^{3} + 57\cdot 139^{4} +O(139^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 98 + 105\cdot 139 + 106\cdot 139^{2} + 42\cdot 139^{3} + 28\cdot 139^{4} +O(139^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 104 + 109\cdot 139 + 81\cdot 139^{2} + 90\cdot 139^{3} + 11\cdot 139^{4} +O(139^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$