Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ a^{2} + 2 a + \left(3 a^{2} + 2 a + 10\right)\cdot 11 + \left(8 a^{2} + 2 a + 2\right)\cdot 11^{2} + \left(a^{2} + 3 a\right)\cdot 11^{3} + \left(9 a^{2} + 8 a + 2\right)\cdot 11^{4} + \left(6 a^{2} + 3 a + 1\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ a^{2} + 3 a + 8 + \left(8 a + 9\right)\cdot 11 + \left(4 a^{2} + 3 a + 9\right)\cdot 11^{2} + \left(9 a + 7\right)\cdot 11^{3} + \left(a^{2} + 9 a + 8\right)\cdot 11^{4} + \left(a^{2} + 2 a + 9\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ a^{2} + 8 + \left(5 a^{2} + 6 a + 1\right)\cdot 11 + \left(9 a^{2} + 10 a + 6\right)\cdot 11^{2} + \left(a^{2} + 5 a + 2\right)\cdot 11^{3} + a\cdot 11^{4} + \left(4 a^{2} + 9 a + 10\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 9 a^{2} + 8 a + 4 + \left(5 a^{2} + 7 a + 6\right)\cdot 11 + \left(8 a^{2} + 7 a + 8\right)\cdot 11^{2} + \left(8 a^{2} + 6 a\right)\cdot 11^{3} + \left(9 a^{2} + 10 a + 2\right)\cdot 11^{4} + \left(5 a^{2} + 9 a + 5\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 7 + 8\cdot 11 + 10\cdot 11^{2} + 5\cdot 11^{3} + 8\cdot 11^{4} + 9\cdot 11^{5} +O\left(11^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 10 a + 6 + \left(a^{2} + 3\right)\cdot 11 + \left(5 a^{2} + a + 2\right)\cdot 11^{2} + \left(4 a^{2} + 5 a\right)\cdot 11^{3} + \left(7 a^{2} + 6 a + 7\right)\cdot 11^{4} + \left(10 a^{2} + 2\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 10 a^{2} + 10 a + 1 + \left(6 a^{2} + 7 a + 4\right)\cdot 11 + \left(8 a^{2} + 7 a + 3\right)\cdot 11^{2} + \left(4 a^{2} + 2 a + 4\right)\cdot 11^{3} + \left(5 a^{2} + 7 a + 4\right)\cdot 11^{4} + \left(4 a^{2} + 6 a + 5\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,2)(5,6)$ |
| $(1,5,7,4)(2,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$3$ |
$3$ |
| $21$ |
$2$ |
$(1,2)(5,6)$ |
$-1$ |
$-1$ |
| $56$ |
$3$ |
$(1,7,6)(3,4,5)$ |
$0$ |
$0$ |
| $42$ |
$4$ |
$(1,5,7,4)(2,3)$ |
$1$ |
$1$ |
| $24$ |
$7$ |
$(1,3,2,5,6,7,4)$ |
$\zeta_{7}^{4} + \zeta_{7}^{2} + \zeta_{7}$ |
$-\zeta_{7}^{4} - \zeta_{7}^{2} - \zeta_{7} - 1$ |
| $24$ |
$7$ |
$(1,5,4,2,7,3,6)$ |
$-\zeta_{7}^{4} - \zeta_{7}^{2} - \zeta_{7} - 1$ |
$\zeta_{7}^{4} + \zeta_{7}^{2} + \zeta_{7}$ |
The blue line marks the conjugacy class containing complex conjugation.