Properties

Label 3.570025.12t33.a
Dimension $3$
Group $A_5$
Conductor $570025$
Indicator $1$

Related objects

Learn more

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:\(570025\)\(\medspace = 5^{2} \cdot 151^{2}\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 5.1.570025.1
Galois orbit size: $2$
Smallest permutation container: $A_5$
Parity: even
Projective image: $A_5$
Projective field: 5.1.570025.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: \(x^{2} + 7 x + 2\)  Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 4 a + 4 + 8\cdot 11 + \left(7 a + 4\right)\cdot 11^{2} + \left(10 a + 7\right)\cdot 11^{3} + \left(6 a + 5\right)\cdot 11^{4} +O(11^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 7 a + 9 + \left(10 a + 5\right)\cdot 11 + \left(3 a + 10\right)\cdot 11^{2} + 9\cdot 11^{3} + 4 a\cdot 11^{4} +O(11^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( a + 5 + \left(3 a + 9\right)\cdot 11 + \left(7 a + 2\right)\cdot 11^{2} + \left(10 a + 7\right)\cdot 11^{3} + \left(6 a + 10\right)\cdot 11^{4} +O(11^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 6 + 10\cdot 11 + 7\cdot 11^{2} + 9\cdot 11^{3} + 9\cdot 11^{4} +O(11^{5})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 10 a + 9 + \left(7 a + 9\right)\cdot 11 + \left(3 a + 6\right)\cdot 11^{2} + 9\cdot 11^{3} + \left(4 a + 5\right)\cdot 11^{4} +O(11^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$15$ $2$ $(1,2)(3,4)$ $-1$ $-1$
$20$ $3$ $(1,2,3)$ $0$ $0$
$12$ $5$ $(1,2,3,4,5)$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$12$ $5$ $(1,3,4,5,2)$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.