Properties

Label 3.563.4t5.b
Dimension $3$
Group $S_4$
Conductor $563$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:\(563\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 4.2.563.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: odd
Projective image: $S_4$
Projective field: Galois closure of 4.2.563.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 137 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 80 + 67\cdot 137 + 75\cdot 137^{2} + 127\cdot 137^{3} + 122\cdot 137^{4} +O(137^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 108 + 29\cdot 137 + 103\cdot 137^{2} + 73\cdot 137^{3} + 31\cdot 137^{4} +O(137^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 111 + 67\cdot 137 + 30\cdot 137^{2} + 52\cdot 137^{3} + 26\cdot 137^{4} +O(137^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 113 + 108\cdot 137 + 64\cdot 137^{2} + 20\cdot 137^{3} + 93\cdot 137^{4} +O(137^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.