Properties

Label 3.491e2.6t8.4
Dimension 3
Group $S_4$
Conductor $ 491^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$241081= 491^{2} $
Artin number field: Splitting field of $f= x^{6} + x^{4} + x^{2} - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 43 a + 42 + \left(36 a + 1\right)\cdot 47 + \left(5 a + 34\right)\cdot 47^{2} + \left(44 a + 31\right)\cdot 47^{3} + \left(21 a + 45\right)\cdot 47^{4} + \left(4 a + 23\right)\cdot 47^{5} + \left(30 a + 45\right)\cdot 47^{6} + \left(34 a + 2\right)\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 23 + 26\cdot 47 + 33\cdot 47^{2} + 19\cdot 47^{3} + 46\cdot 47^{4} + 32\cdot 47^{5} + 28\cdot 47^{6} + 22\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 43 a + 13 + \left(36 a + 14\right)\cdot 47 + \left(5 a + 38\right)\cdot 47^{2} + \left(44 a + 26\right)\cdot 47^{3} + \left(21 a + 1\right)\cdot 47^{4} + \left(4 a + 36\right)\cdot 47^{5} + \left(30 a + 39\right)\cdot 47^{6} + \left(34 a + 4\right)\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 5 + \left(10 a + 45\right)\cdot 47 + \left(41 a + 12\right)\cdot 47^{2} + \left(2 a + 15\right)\cdot 47^{3} + \left(25 a + 1\right)\cdot 47^{4} + \left(42 a + 23\right)\cdot 47^{5} + \left(16 a + 1\right)\cdot 47^{6} + \left(12 a + 44\right)\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 24 + 20\cdot 47 + 13\cdot 47^{2} + 27\cdot 47^{3} + 14\cdot 47^{5} + 18\cdot 47^{6} + 24\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 34 + \left(10 a + 32\right)\cdot 47 + \left(41 a + 8\right)\cdot 47^{2} + \left(2 a + 20\right)\cdot 47^{3} + \left(25 a + 45\right)\cdot 47^{4} + \left(42 a + 10\right)\cdot 47^{5} + \left(16 a + 7\right)\cdot 47^{6} + \left(12 a + 42\right)\cdot 47^{7} +O\left(47^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(1,3,2)(4,6,5)$
$(1,5)(2,4)$
$(1,3,5)(2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,4)(3,6)$ $-1$
$6$ $2$ $(1,2)(4,5)$ $-1$
$8$ $3$ $(1,3,2)(4,6,5)$ $0$
$6$ $4$ $(1,3,4,6)(2,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.