Properties

Label 3.47e3_331e2.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 47^{3} \cdot 331^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$11374951703= 47^{3} \cdot 331^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 45 x^{4} - 123 x^{3} + 1221 x^{2} - 422 x + 16753 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 20 a + 49 + \left(58 a + 37\right)\cdot 59 + 46\cdot 59^{2} + \left(13 a + 1\right)\cdot 59^{3} + \left(41 a + 45\right)\cdot 59^{4} + \left(3 a + 16\right)\cdot 59^{5} + 15\cdot 59^{6} + \left(a + 22\right)\cdot 59^{7} + \left(34 a + 52\right)\cdot 59^{8} + \left(51 a + 21\right)\cdot 59^{9} + \left(19 a + 2\right)\cdot 59^{10} + \left(40 a + 1\right)\cdot 59^{11} +O\left(59^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 4 + 16\cdot 59 + 23\cdot 59^{2} + 56\cdot 59^{3} + 8\cdot 59^{4} + 50\cdot 59^{5} + 30\cdot 59^{6} + 39\cdot 59^{7} + 56\cdot 59^{8} + 54\cdot 59^{9} + 42\cdot 59^{10} + 3\cdot 59^{11} +O\left(59^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 30 a + 47 + \left(40 a + 26\right)\cdot 59 + \left(32 a + 52\right)\cdot 59^{2} + \left(13 a + 42\right)\cdot 59^{3} + \left(52 a + 56\right)\cdot 59^{4} + \left(11 a + 26\right)\cdot 59^{5} + \left(4 a + 28\right)\cdot 59^{6} + \left(3 a + 32\right)\cdot 59^{7} + \left(21 a + 15\right)\cdot 59^{8} + \left(19 a + 45\right)\cdot 59^{9} + \left(25 a + 57\right)\cdot 59^{10} + \left(57 a + 29\right)\cdot 59^{11} +O\left(59^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 39 a + 10 + 17\cdot 59 + \left(58 a + 48\right)\cdot 59^{2} + \left(45 a + 13\right)\cdot 59^{3} + \left(17 a + 14\right)\cdot 59^{4} + \left(55 a + 38\right)\cdot 59^{5} + \left(58 a + 11\right)\cdot 59^{6} + \left(57 a + 23\right)\cdot 59^{7} + \left(24 a + 26\right)\cdot 59^{8} + \left(7 a + 39\right)\cdot 59^{9} + \left(39 a + 29\right)\cdot 59^{10} + \left(18 a + 21\right)\cdot 59^{11} +O\left(59^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 51 + 41\cdot 59 + 20\cdot 59^{2} + 38\cdot 59^{3} + 15\cdot 59^{4} + 58\cdot 59^{5} + 10\cdot 59^{6} + 28\cdot 59^{7} + 51\cdot 59^{8} + 30\cdot 59^{9} + 39\cdot 59^{10} + 58\cdot 59^{11} +O\left(59^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 29 a + 18 + \left(18 a + 37\right)\cdot 59 + \left(26 a + 44\right)\cdot 59^{2} + \left(45 a + 23\right)\cdot 59^{3} + \left(6 a + 36\right)\cdot 59^{4} + \left(47 a + 45\right)\cdot 59^{5} + \left(54 a + 20\right)\cdot 59^{6} + \left(55 a + 31\right)\cdot 59^{7} + \left(37 a + 33\right)\cdot 59^{8} + \left(39 a + 43\right)\cdot 59^{9} + \left(33 a + 4\right)\cdot 59^{10} + \left(a + 3\right)\cdot 59^{11} +O\left(59^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)$
$(1,2)(3,5)$
$(1,4,2)(3,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,3)(2,5)(4,6)$ $-3$
$3$ $2$ $(1,3)(2,5)$ $-1$
$3$ $2$ $(2,5)$ $1$
$6$ $2$ $(1,2)(3,5)$ $-1$
$6$ $2$ $(1,3)(2,4)(5,6)$ $1$
$8$ $3$ $(1,4,2)(3,6,5)$ $0$
$6$ $4$ $(1,5,3,2)$ $-1$
$6$ $4$ $(1,3)(2,6,5,4)$ $1$
$8$ $6$ $(1,4,2,3,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.