Properties

Label 3.47e3_331.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 47^{3} \cdot 331 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$34365413= 47^{3} \cdot 331 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 314 x^{4} - 1022 x^{3} + 36467 x^{2} - 193326 x - 1992632 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.47_331.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 25.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 8 + \left(2 a + 9\right)\cdot 13 + \left(4 a + 12\right)\cdot 13^{2} + \left(6 a + 4\right)\cdot 13^{3} + \left(2 a + 2\right)\cdot 13^{4} + \left(7 a + 12\right)\cdot 13^{5} + \left(3 a + 11\right)\cdot 13^{6} + \left(11 a + 12\right)\cdot 13^{7} + \left(2 a + 3\right)\cdot 13^{8} + \left(a + 1\right)\cdot 13^{9} + 9 a\cdot 13^{10} + \left(a + 5\right)\cdot 13^{11} + \left(5 a + 7\right)\cdot 13^{12} + \left(5 a + 7\right)\cdot 13^{13} + \left(7 a + 12\right)\cdot 13^{14} + \left(11 a + 3\right)\cdot 13^{15} + \left(5 a + 7\right)\cdot 13^{16} + \left(6 a + 9\right)\cdot 13^{17} + \left(10 a + 11\right)\cdot 13^{18} + \left(12 a + 8\right)\cdot 13^{19} + \left(12 a + 3\right)\cdot 13^{20} + \left(3 a + 11\right)\cdot 13^{21} + \left(9 a + 4\right)\cdot 13^{22} + \left(8 a + 1\right)\cdot 13^{23} + \left(4 a + 4\right)\cdot 13^{24} +O\left(13^{ 25 }\right)$
$r_{ 2 }$ $=$ $ 8 + 2\cdot 13 + 5\cdot 13^{2} + 9\cdot 13^{3} + 10\cdot 13^{5} + 2\cdot 13^{6} + 5\cdot 13^{7} + 2\cdot 13^{8} + 5\cdot 13^{9} + 5\cdot 13^{10} + 12\cdot 13^{11} + 10\cdot 13^{12} + 13^{13} + 9\cdot 13^{14} + 3\cdot 13^{15} + 2\cdot 13^{16} + 6\cdot 13^{17} + 6\cdot 13^{18} + 3\cdot 13^{19} + 3\cdot 13^{20} + 9\cdot 13^{21} + 6\cdot 13^{22} + 11\cdot 13^{23} + 12\cdot 13^{24} +O\left(13^{ 25 }\right)$
$r_{ 3 }$ $=$ $ 3 a + \left(7 a + 9\right)\cdot 13 + 9\cdot 13^{2} + \left(3 a + 6\right)\cdot 13^{3} + \left(9 a + 10\right)\cdot 13^{4} + \left(11 a + 2\right)\cdot 13^{5} + \left(2 a + 9\right)\cdot 13^{6} + \left(12 a + 11\right)\cdot 13^{7} + 12 a\cdot 13^{8} + \left(6 a + 10\right)\cdot 13^{9} + 5\cdot 13^{10} + \left(8 a + 5\right)\cdot 13^{11} + 9 a\cdot 13^{12} + \left(5 a + 12\right)\cdot 13^{13} + \left(12 a + 6\right)\cdot 13^{14} + \left(11 a + 4\right)\cdot 13^{15} + \left(2 a + 1\right)\cdot 13^{16} + \left(4 a + 3\right)\cdot 13^{17} + \left(10 a + 7\right)\cdot 13^{18} + \left(8 a + 8\right)\cdot 13^{19} + \left(4 a + 3\right)\cdot 13^{20} + \left(2 a + 11\right)\cdot 13^{21} + \left(a + 1\right)\cdot 13^{22} + \left(12 a + 9\right)\cdot 13^{23} + \left(10 a + 3\right)\cdot 13^{24} +O\left(13^{ 25 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 3 + 5 a\cdot 13 + \left(12 a + 3\right)\cdot 13^{2} + \left(9 a + 9\right)\cdot 13^{3} + \left(3 a + 3\right)\cdot 13^{4} + \left(a + 5\right)\cdot 13^{5} + 10 a\cdot 13^{6} + 8\cdot 13^{7} + 13^{8} + \left(6 a + 4\right)\cdot 13^{9} + \left(12 a + 12\right)\cdot 13^{10} + \left(4 a + 12\right)\cdot 13^{11} + \left(3 a + 1\right)\cdot 13^{12} + \left(7 a + 8\right)\cdot 13^{13} + \left(a + 4\right)\cdot 13^{15} + \left(10 a + 5\right)\cdot 13^{16} + \left(8 a + 4\right)\cdot 13^{17} + 2 a\cdot 13^{18} + \left(4 a + 7\right)\cdot 13^{19} + \left(8 a + 12\right)\cdot 13^{20} + \left(10 a + 8\right)\cdot 13^{21} + 11 a\cdot 13^{22} + 7\cdot 13^{23} + \left(2 a + 2\right)\cdot 13^{24} +O\left(13^{ 25 }\right)$
$r_{ 5 }$ $=$ $ 6 + 12\cdot 13 + 6\cdot 13^{2} + 13^{3} + 10\cdot 13^{4} + 4\cdot 13^{5} + 6\cdot 13^{6} + 6\cdot 13^{7} + 8\cdot 13^{8} + 5\cdot 13^{9} + 7\cdot 13^{10} + 5\cdot 13^{11} + 7\cdot 13^{12} + 13^{13} + 8\cdot 13^{14} + 13^{15} + 8\cdot 13^{16} + 5\cdot 13^{17} + 10\cdot 13^{18} + 12\cdot 13^{19} + 11\cdot 13^{20} + 8\cdot 13^{21} + 13^{22} + 9\cdot 13^{23} + 2\cdot 13^{24} +O\left(13^{ 25 }\right)$
$r_{ 6 }$ $=$ $ 6 a + 2 + \left(10 a + 5\right)\cdot 13 + \left(8 a + 1\right)\cdot 13^{2} + \left(6 a + 7\right)\cdot 13^{3} + \left(10 a + 11\right)\cdot 13^{4} + \left(5 a + 3\right)\cdot 13^{5} + \left(9 a + 8\right)\cdot 13^{6} + \left(a + 7\right)\cdot 13^{7} + \left(10 a + 8\right)\cdot 13^{8} + \left(11 a + 12\right)\cdot 13^{9} + \left(3 a + 7\right)\cdot 13^{10} + \left(11 a + 10\right)\cdot 13^{11} + \left(7 a + 10\right)\cdot 13^{12} + \left(7 a + 7\right)\cdot 13^{13} + \left(5 a + 1\right)\cdot 13^{14} + \left(a + 8\right)\cdot 13^{15} + \left(7 a + 1\right)\cdot 13^{16} + \left(6 a + 10\right)\cdot 13^{17} + \left(2 a + 2\right)\cdot 13^{18} + 11\cdot 13^{19} + 3\cdot 13^{20} + \left(9 a + 2\right)\cdot 13^{21} + \left(3 a + 10\right)\cdot 13^{22} + 4 a\cdot 13^{23} + 8 a\cdot 13^{24} +O\left(13^{ 25 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)$
$(1,2)(3,5)$
$(1,2,4)(3,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,3)(2,5)(4,6)$$-3$
$3$$2$$(4,6)$$1$
$3$$2$$(1,3)(4,6)$$-1$
$6$$2$$(1,2)(3,5)$$-1$
$6$$2$$(1,2)(3,5)(4,6)$$1$
$8$$3$$(1,2,4)(3,5,6)$$0$
$6$$4$$(1,4,3,6)$$-1$
$6$$4$$(1,4,3,6)(2,5)$$1$
$8$$6$$(1,2,4,3,5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.