Properties

Label 3.43659.6t6.a.a
Dimension $3$
Group $A_4\times C_2$
Conductor $43659$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $A_4\times C_2$
Conductor: \(43659\)\(\medspace = 3^{4} \cdot 7^{2} \cdot 11 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.4.173282571.1
Galois orbit size: $1$
Smallest permutation container: $A_4\times C_2$
Parity: odd
Determinant: 1.11.2t1.a.a
Projective image: $A_4$
Projective stem field: Galois closure of 4.0.480249.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 15x^{4} - 7x^{3} + 54x^{2} + 21x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 9.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: \( x^{2} + 21x + 5 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 5 + 3\cdot 23 + 12\cdot 23^{2} + 14\cdot 23^{3} + 23^{4} + 22\cdot 23^{5} + 18\cdot 23^{6} + 15\cdot 23^{7} + 6\cdot 23^{8} +O(23^{9})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 20 a + 19 + \left(15 a + 8\right)\cdot 23 + \left(3 a + 21\right)\cdot 23^{2} + \left(7 a + 14\right)\cdot 23^{3} + \left(11 a + 6\right)\cdot 23^{4} + 13\cdot 23^{5} + \left(18 a + 1\right)\cdot 23^{6} + \left(19 a + 17\right)\cdot 23^{7} + \left(2 a + 11\right)\cdot 23^{8} +O(23^{9})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 3 a + 13 + \left(7 a + 20\right)\cdot 23 + \left(19 a + 12\right)\cdot 23^{2} + \left(15 a + 2\right)\cdot 23^{3} + \left(11 a + 22\right)\cdot 23^{4} + \left(22 a + 2\right)\cdot 23^{5} + \left(4 a + 14\right)\cdot 23^{6} + \left(3 a + 15\right)\cdot 23^{7} + \left(20 a + 20\right)\cdot 23^{8} +O(23^{9})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 11 + 5\cdot 23 + 19\cdot 23^{2} + 8\cdot 23^{3} + 7\cdot 23^{4} + 15\cdot 23^{5} + 8\cdot 23^{6} + 9\cdot 23^{7} + 23^{8} +O(23^{9})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 8 a + 14 + \left(15 a + 15\right)\cdot 23 + \left(7 a + 1\right)\cdot 23^{2} + \left(10 a + 19\right)\cdot 23^{3} + \left(21 a + 10\right)\cdot 23^{4} + \left(6 a + 11\right)\cdot 23^{5} + \left(2 a + 2\right)\cdot 23^{6} + \left(12 a + 6\right)\cdot 23^{7} + \left(7 a + 1\right)\cdot 23^{8} +O(23^{9})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 15 a + 7 + \left(7 a + 15\right)\cdot 23 + \left(15 a + 1\right)\cdot 23^{2} + \left(12 a + 9\right)\cdot 23^{3} + \left(a + 20\right)\cdot 23^{4} + \left(16 a + 3\right)\cdot 23^{5} + 20 a\cdot 23^{6} + \left(10 a + 5\right)\cdot 23^{7} + \left(15 a + 4\right)\cdot 23^{8} +O(23^{9})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)$
$(1,2,5)(3,6,4)$
$(2,3)$
$(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$1$$2$$(1,4)(2,3)(5,6)$$-3$
$3$$2$$(1,4)$$1$
$3$$2$$(1,4)(5,6)$$-1$
$4$$3$$(1,2,5)(3,6,4)$$0$
$4$$3$$(1,5,2)(3,4,6)$$0$
$4$$6$$(1,3,6,4,2,5)$$0$
$4$$6$$(1,5,2,4,6,3)$$0$