Properties

Label 3.3e9_7e3.9t6.1c2
Dimension 3
Group $C_9:C_3$
Conductor $ 3^{9} \cdot 7^{3}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_9:C_3$
Conductor:$6751269= 3^{9} \cdot 7^{3} $
Artin number field: Splitting field of $f= x^{9} - 63 x^{7} + 1323 x^{5} - 10290 x^{3} + 21609 x - 11564 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_9:C_3$
Parity: Even
Determinant: 1.3e2_7.3t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 17.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{3} + 3 x + 42 $
Roots:
$r_{ 1 }$ $=$ $ 22 a^{2} + 35 a + 44 + \left(8 a^{2} + 2 a + 16\right)\cdot 47 + \left(31 a^{2} + 7 a + 15\right)\cdot 47^{2} + \left(14 a^{2} + 28 a + 29\right)\cdot 47^{3} + \left(35 a^{2} + 4 a + 23\right)\cdot 47^{4} + \left(30 a^{2} + 5 a + 14\right)\cdot 47^{5} + \left(18 a^{2} + 44 a + 37\right)\cdot 47^{6} + \left(28 a^{2} + 44 a + 9\right)\cdot 47^{7} + \left(37 a^{2} + 16 a + 28\right)\cdot 47^{8} + \left(26 a^{2} + 39 a + 6\right)\cdot 47^{9} + \left(9 a^{2} + 29 a + 19\right)\cdot 47^{10} + \left(14 a^{2} + 10 a + 28\right)\cdot 47^{11} + \left(16 a^{2} + 40 a + 32\right)\cdot 47^{12} + \left(36 a^{2} + 39 a + 25\right)\cdot 47^{13} + \left(42 a^{2} + 15 a + 38\right)\cdot 47^{14} + \left(32 a^{2} + 15 a + 18\right)\cdot 47^{15} + \left(26 a + 1\right)\cdot 47^{16} +O\left(47^{ 17 }\right)$
$r_{ 2 }$ $=$ $ 23 + 6\cdot 47 + 45\cdot 47^{2} + 31\cdot 47^{3} + 21\cdot 47^{4} + 32\cdot 47^{5} + 5\cdot 47^{6} + 13\cdot 47^{7} + 19\cdot 47^{9} + 2\cdot 47^{10} + 2\cdot 47^{11} + 15\cdot 47^{12} + 41\cdot 47^{13} + 46\cdot 47^{14} + 20\cdot 47^{15} + 26\cdot 47^{16} +O\left(47^{ 17 }\right)$
$r_{ 3 }$ $=$ $ 11 a^{2} + 10 a + 22 + \left(33 a^{2} + 41 a + 19\right)\cdot 47 + \left(45 a^{2} + 17 a + 44\right)\cdot 47^{2} + \left(13 a^{2} + 5 a + 27\right)\cdot 47^{3} + \left(8 a^{2} + 16 a + 16\right)\cdot 47^{4} + \left(10 a^{2} + 22 a + 20\right)\cdot 47^{5} + \left(30 a^{2} + 9 a + 13\right)\cdot 47^{6} + \left(9 a^{2} + 32 a + 19\right)\cdot 47^{7} + \left(11 a^{2} + 27 a + 22\right)\cdot 47^{8} + \left(44 a^{2} + 19 a + 41\right)\cdot 47^{9} + \left(38 a^{2} + 30\right)\cdot 47^{10} + \left(16 a^{2} + 3 a + 33\right)\cdot 47^{11} + \left(17 a^{2} + 28 a + 34\right)\cdot 47^{12} + \left(13 a^{2} + 16 a + 26\right)\cdot 47^{13} + \left(7 a^{2} + 45 a + 14\right)\cdot 47^{14} + \left(18 a^{2} + 18 a + 36\right)\cdot 47^{15} + \left(24 a^{2} + 26 a + 1\right)\cdot 47^{16} +O\left(47^{ 17 }\right)$
$r_{ 4 }$ $=$ $ 8 a^{2} + 29 a + 16 + \left(a^{2} + 20 a + 2\right)\cdot 47 + \left(25 a^{2} + 8 a + 3\right)\cdot 47^{2} + \left(20 a^{2} + 16 a + 41\right)\cdot 47^{3} + \left(10 a^{2} + 29 a + 20\right)\cdot 47^{4} + \left(8 a^{2} + 8 a + 16\right)\cdot 47^{5} + \left(46 a^{2} + 21 a + 45\right)\cdot 47^{6} + \left(31 a^{2} + 31 a + 16\right)\cdot 47^{7} + \left(7 a^{2} + 8 a + 15\right)\cdot 47^{8} + \left(6 a^{2} + 2 a + 12\right)\cdot 47^{9} + 3 a\cdot 47^{10} + \left(20 a^{2} + 40 a + 40\right)\cdot 47^{11} + \left(21 a^{2} + 32 a + 42\right)\cdot 47^{12} + \left(a^{2} + 20 a + 2\right)\cdot 47^{13} + \left(9 a^{2} + 45 a + 18\right)\cdot 47^{14} + \left(13 a^{2} + 2 a + 26\right)\cdot 47^{15} + \left(44 a^{2} + 10 a + 41\right)\cdot 47^{16} +O\left(47^{ 17 }\right)$
$r_{ 5 }$ $=$ $ 28 a^{2} + 8 a + 9 + \left(12 a^{2} + 32 a + 25\right)\cdot 47 + \left(23 a^{2} + 20 a + 46\right)\cdot 47^{2} + \left(12 a^{2} + 25 a + 24\right)\cdot 47^{3} + \left(28 a^{2} + a + 9\right)\cdot 47^{4} + \left(28 a^{2} + 16 a + 10\right)\cdot 47^{5} + \left(17 a^{2} + 16 a + 35\right)\cdot 47^{6} + \left(5 a^{2} + 30 a + 10\right)\cdot 47^{7} + \left(28 a^{2} + 10 a + 9\right)\cdot 47^{8} + \left(43 a^{2} + 25 a + 40\right)\cdot 47^{9} + \left(7 a^{2} + 43 a + 15\right)\cdot 47^{10} + \left(10 a^{2} + 3 a + 20\right)\cdot 47^{11} + \left(8 a^{2} + 33 a + 16\right)\cdot 47^{12} + \left(32 a^{2} + 9 a + 17\right)\cdot 47^{13} + \left(30 a^{2} + 3 a + 14\right)\cdot 47^{14} + \left(15 a^{2} + 25 a + 31\right)\cdot 47^{15} + \left(25 a^{2} + 10 a + 3\right)\cdot 47^{16} +O\left(47^{ 17 }\right)$
$r_{ 6 }$ $=$ $ 36 + 16\cdot 47 + 14\cdot 47^{2} + 15\cdot 47^{3} + 21\cdot 47^{4} + 5\cdot 47^{5} + 42\cdot 47^{6} + 7\cdot 47^{7} + 27\cdot 47^{8} + 3\cdot 47^{9} + 4\cdot 47^{10} + 28\cdot 47^{11} + 26\cdot 47^{12} + 19\cdot 47^{13} + 20\cdot 47^{14} + 2\cdot 47^{15} + 25\cdot 47^{16} +O\left(47^{ 17 }\right)$
$r_{ 7 }$ $=$ $ 35 + 23\cdot 47 + 34\cdot 47^{2} + 46\cdot 47^{3} + 3\cdot 47^{4} + 9\cdot 47^{5} + 46\cdot 47^{6} + 25\cdot 47^{7} + 19\cdot 47^{8} + 24\cdot 47^{9} + 40\cdot 47^{10} + 16\cdot 47^{11} + 5\cdot 47^{12} + 33\cdot 47^{13} + 26\cdot 47^{14} + 23\cdot 47^{15} + 42\cdot 47^{16} +O\left(47^{ 17 }\right)$
$r_{ 8 }$ $=$ $ 34 a^{2} + 24 a + 21 + \left(7 a^{2} + 34 a + 15\right)\cdot 47 + \left(14 a^{2} + 34 a + 28\right)\cdot 47^{2} + \left(32 a^{2} + 19 a + 17\right)\cdot 47^{3} + \left(3 a^{2} + 41 a + 7\right)\cdot 47^{4} + \left(23 a^{2} + 32 a + 46\right)\cdot 47^{5} + \left(6 a^{2} + 19 a + 12\right)\cdot 47^{6} + \left(8 a^{2} + 16\right)\cdot 47^{7} + \left(35 a^{2} + 43 a + 23\right)\cdot 47^{8} + \left(26 a + 1\right)\cdot 47^{9} + \left(16 a^{2} + 30 a + 32\right)\cdot 47^{10} + \left(32 a^{2} + 13 a + 17\right)\cdot 47^{11} + \left(12 a^{2} + 40 a + 25\right)\cdot 47^{12} + \left(3 a^{2} + 8 a + 6\right)\cdot 47^{13} + \left(39 a^{2} + 4 a + 31\right)\cdot 47^{14} + \left(39 a^{2} + 16 a + 32\right)\cdot 47^{15} + \left(38 a^{2} + 9 a + 30\right)\cdot 47^{16} +O\left(47^{ 17 }\right)$
$r_{ 9 }$ $=$ $ 38 a^{2} + 35 a + 29 + \left(30 a^{2} + 9 a + 14\right)\cdot 47 + \left(a^{2} + 5 a + 3\right)\cdot 47^{2} + 46 a\cdot 47^{3} + \left(8 a^{2} + 16\right)\cdot 47^{4} + \left(40 a^{2} + 9 a + 33\right)\cdot 47^{5} + \left(21 a^{2} + 30 a + 43\right)\cdot 47^{6} + \left(10 a^{2} + a + 20\right)\cdot 47^{7} + \left(21 a^{2} + 34 a + 42\right)\cdot 47^{8} + \left(19 a^{2} + 27 a + 38\right)\cdot 47^{9} + \left(21 a^{2} + 33 a + 42\right)\cdot 47^{10} + 22 a\cdot 47^{11} + \left(18 a^{2} + 13 a + 36\right)\cdot 47^{12} + \left(7 a^{2} + 45 a + 14\right)\cdot 47^{13} + \left(12 a^{2} + 26 a + 24\right)\cdot 47^{14} + \left(21 a^{2} + 15 a + 42\right)\cdot 47^{15} + \left(7 a^{2} + 11 a + 14\right)\cdot 47^{16} +O\left(47^{ 17 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3,7,8,4,6,9,5,2)$
$(1,9,8)(2,7,6)$
$(2,6,7)(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$1$$3$$(1,8,9)(2,7,6)(3,4,5)$$-3 \zeta_{3} - 3$
$1$$3$$(1,9,8)(2,6,7)(3,5,4)$$3 \zeta_{3}$
$3$$3$$(1,9,8)(2,7,6)$$0$
$3$$3$$(1,8,9)(2,6,7)$$0$
$3$$9$$(1,3,7,8,4,6,9,5,2)$$0$
$3$$9$$(1,7,4,9,2,3,8,6,5)$$0$
$3$$9$$(1,4,7,8,5,6,9,3,2)$$0$
$3$$9$$(1,7,5,9,2,4,8,6,3)$$0$
$3$$9$$(1,5,7,8,3,6,9,4,2)$$0$
$3$$9$$(1,7,3,9,2,5,8,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.