Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 25.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 1 + 5\cdot 17 + 6\cdot 17^{2} + 12\cdot 17^{3} + 5\cdot 17^{4} + 8\cdot 17^{5} + 10\cdot 17^{6} + 16\cdot 17^{7} + 2\cdot 17^{8} + 8\cdot 17^{9} + 7\cdot 17^{10} + 9\cdot 17^{12} + 8\cdot 17^{13} + 5\cdot 17^{14} + 8\cdot 17^{15} + 15\cdot 17^{17} + 17^{18} + 2\cdot 17^{19} + 16\cdot 17^{21} + 10\cdot 17^{22} + 12\cdot 17^{23} + 13\cdot 17^{24} +O\left(17^{ 25 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 13 a + \left(6 a^{2} + 10 a + 4\right)\cdot 17 + \left(13 a^{2} + 3 a + 3\right)\cdot 17^{2} + \left(8 a^{2} + 7 a\right)\cdot 17^{3} + \left(5 a + 6\right)\cdot 17^{4} + \left(a^{2} + 5 a + 6\right)\cdot 17^{5} + \left(a^{2} + 2 a + 6\right)\cdot 17^{6} + \left(8 a^{2} + 14 a + 5\right)\cdot 17^{7} + \left(15 a^{2} + 11 a + 10\right)\cdot 17^{8} + \left(4 a^{2} + 6 a + 14\right)\cdot 17^{9} + \left(a^{2} + 9 a\right)\cdot 17^{10} + \left(16 a^{2} + 7 a + 5\right)\cdot 17^{11} + \left(15 a^{2} + a + 16\right)\cdot 17^{12} + \left(9 a^{2} + 3 a\right)\cdot 17^{13} + \left(9 a^{2} + 9 a + 12\right)\cdot 17^{14} + \left(7 a^{2} + 2 a + 10\right)\cdot 17^{15} + \left(6 a^{2} + 13 a + 15\right)\cdot 17^{16} + \left(4 a^{2} + 2\right)\cdot 17^{17} + \left(11 a^{2} + 7 a + 13\right)\cdot 17^{18} + \left(15 a^{2} + 8 a + 4\right)\cdot 17^{19} + \left(2 a^{2} + 12 a + 13\right)\cdot 17^{20} + \left(3 a^{2} + 6 a + 7\right)\cdot 17^{21} + \left(9 a^{2} + 14 a\right)\cdot 17^{22} + \left(6 a^{2} + 12 a + 10\right)\cdot 17^{23} + \left(14 a^{2} + 10 a + 9\right)\cdot 17^{24} +O\left(17^{ 25 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 16 a^{2} + 6 a + 5 + \left(6 a^{2} + 14 a + 10\right)\cdot 17 + \left(2 a^{2} + 16 a + 1\right)\cdot 17^{2} + \left(a^{2} + a + 12\right)\cdot 17^{3} + \left(8 a^{2} + a + 16\right)\cdot 17^{4} + \left(9 a^{2} + 8 a + 11\right)\cdot 17^{5} + \left(2 a^{2} + 12 a + 1\right)\cdot 17^{6} + \left(2 a^{2} + 12 a + 7\right)\cdot 17^{7} + \left(8 a^{2} + 5\right)\cdot 17^{8} + \left(4 a^{2} + a + 14\right)\cdot 17^{9} + \left(5 a^{2} + a + 14\right)\cdot 17^{10} + \left(14 a^{2} + 6 a + 3\right)\cdot 17^{11} + \left(9 a^{2} + 5 a + 12\right)\cdot 17^{12} + \left(a^{2} + 13 a + 6\right)\cdot 17^{13} + \left(15 a^{2} + 16 a + 4\right)\cdot 17^{14} + \left(13 a^{2} + 6 a + 9\right)\cdot 17^{15} + \left(14 a^{2} + 2 a + 15\right)\cdot 17^{16} + \left(6 a^{2} + 6 a + 15\right)\cdot 17^{17} + \left(8 a^{2} + 8 a + 16\right)\cdot 17^{18} + \left(4 a^{2} + 12 a + 2\right)\cdot 17^{19} + \left(2 a^{2} + 6 a + 7\right)\cdot 17^{20} + \left(7 a^{2} + 2 a + 10\right)\cdot 17^{21} + \left(9 a^{2} + 4 a\right)\cdot 17^{22} + \left(8 a^{2} + 7 a\right)\cdot 17^{23} + \left(14 a^{2} + 13 a + 4\right)\cdot 17^{24} +O\left(17^{ 25 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ a^{2} + 15 a + 12 + \left(4 a^{2} + 8 a + 2\right)\cdot 17 + \left(a^{2} + 13 a + 12\right)\cdot 17^{2} + \left(7 a^{2} + 7 a + 4\right)\cdot 17^{3} + \left(8 a^{2} + 10 a + 11\right)\cdot 17^{4} + \left(6 a^{2} + 3 a + 15\right)\cdot 17^{5} + \left(13 a^{2} + 2 a + 8\right)\cdot 17^{6} + \left(6 a^{2} + 7 a + 4\right)\cdot 17^{7} + \left(10 a^{2} + 4 a + 1\right)\cdot 17^{8} + \left(7 a^{2} + 9 a + 5\right)\cdot 17^{9} + \left(10 a^{2} + 6 a + 1\right)\cdot 17^{10} + \left(3 a^{2} + 3 a + 8\right)\cdot 17^{11} + \left(8 a^{2} + 10 a + 5\right)\cdot 17^{12} + \left(5 a^{2} + 9\right)\cdot 17^{13} + \left(9 a^{2} + 8 a\right)\cdot 17^{14} + \left(12 a^{2} + 7 a + 14\right)\cdot 17^{15} + \left(12 a^{2} + a + 2\right)\cdot 17^{16} + \left(5 a^{2} + 10 a + 15\right)\cdot 17^{17} + \left(14 a^{2} + a + 3\right)\cdot 17^{18} + \left(13 a^{2} + 13 a + 9\right)\cdot 17^{19} + \left(11 a^{2} + 14 a + 13\right)\cdot 17^{20} + \left(6 a^{2} + 7 a + 15\right)\cdot 17^{21} + \left(15 a^{2} + 15 a + 15\right)\cdot 17^{22} + \left(a^{2} + 13 a + 6\right)\cdot 17^{23} + \left(5 a^{2} + 9 a + 3\right)\cdot 17^{24} +O\left(17^{ 25 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 15 a + \left(7 a^{2} + a + 16\right)\cdot 17 + \left(8 a^{2} + 5 a + 16\right)\cdot 17^{2} + \left(13 a^{2} + 8 a + 8\right)\cdot 17^{3} + \left(8 a^{2} + 3 a + 11\right)\cdot 17^{4} + \left(3 a^{2} + 13\right)\cdot 17^{5} + \left(7 a^{2} + a + 4\right)\cdot 17^{6} + \left(6 a^{2} + 7 a + 4\right)\cdot 17^{7} + \left(7 a^{2} + 13 a + 16\right)\cdot 17^{8} + \left(14 a^{2} + 15 a + 3\right)\cdot 17^{9} + \left(13 a^{2} + 4 a + 9\right)\cdot 17^{10} + \left(16 a^{2} + 15 a + 5\right)\cdot 17^{11} + \left(10 a^{2} + 7 a + 7\right)\cdot 17^{12} + \left(3 a^{2} + 2\right)\cdot 17^{13} + \left(a^{2} + 6 a + 12\right)\cdot 17^{14} + \left(11 a^{2} + 4 a + 1\right)\cdot 17^{15} + \left(16 a^{2} + 8 a + 11\right)\cdot 17^{16} + \left(5 a^{2} + 9 a + 9\right)\cdot 17^{17} + \left(13 a^{2} + 14 a + 14\right)\cdot 17^{18} + \left(10 a^{2} + 6 a + 12\right)\cdot 17^{19} + \left(16 a^{2} + 9 a + 16\right)\cdot 17^{20} + \left(9 a + 11\right)\cdot 17^{21} + \left(12 a^{2} + 5 a + 13\right)\cdot 17^{22} + \left(7 a^{2} + 14 a + 10\right)\cdot 17^{23} + \left(9 a^{2} + 12 a\right)\cdot 17^{24} +O\left(17^{ 25 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 8 a^{2} + 3 a + 11 + \left(2 a^{2} + 14 a + 1\right)\cdot 17 + \left(11 a^{2} + a + 13\right)\cdot 17^{2} + \left(7 a^{2} + 2 a + 10\right)\cdot 17^{3} + \left(a^{2} + 12 a + 6\right)\cdot 17^{4} + \left(2 a^{2} + 13 a + 1\right)\cdot 17^{5} + \left(10 a^{2} + 15 a + 1\right)\cdot 17^{6} + \left(11 a^{2} + 4 a + 2\right)\cdot 17^{7} + \left(4 a + 6\right)\cdot 17^{8} + \left(12 a^{2} + 6 a + 2\right)\cdot 17^{9} + \left(2 a^{2} + 2 a + 13\right)\cdot 17^{10} + \left(9 a^{2} + 7 a + 11\right)\cdot 17^{11} + \left(11 a^{2} + 2 a + 7\right)\cdot 17^{12} + \left(14 a^{2} + 11 a + 15\right)\cdot 17^{13} + \left(11 a^{2} + 14 a + 7\right)\cdot 17^{14} + \left(2 a^{2} + 14 a + 7\right)\cdot 17^{15} + \left(14 a + 11\right)\cdot 17^{16} + \left(5 a^{2} + 13 a + 14\right)\cdot 17^{17} + \left(16 a^{2} + 12 a + 10\right)\cdot 17^{18} + \left(a^{2} + 7 a + 12\right)\cdot 17^{19} + \left(15 a^{2} + 15 a + 15\right)\cdot 17^{20} + \left(7 a^{2} + 14 a + 10\right)\cdot 17^{21} + \left(12 a^{2} + 16 a + 2\right)\cdot 17^{22} + \left(16 a^{2} + 7 a + 11\right)\cdot 17^{23} + \left(4 a^{2} + 16 a + 14\right)\cdot 17^{24} +O\left(17^{ 25 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 9 a^{2} + 16 a + 6 + \left(7 a^{2} + 16\right)\cdot 17 + \left(14 a^{2} + 10 a + 3\right)\cdot 17^{2} + \left(12 a^{2} + 6 a + 14\right)\cdot 17^{3} + \left(6 a^{2} + a + 15\right)\cdot 17^{4} + \left(11 a^{2} + 3 a + 1\right)\cdot 17^{5} + \left(16 a^{2} + 11\right)\cdot 17^{6} + \left(15 a^{2} + 5 a + 10\right)\cdot 17^{7} + \left(8 a^{2} + 16 a + 11\right)\cdot 17^{8} + \left(7 a^{2} + 11 a + 10\right)\cdot 17^{9} + \left(9 a + 11\right)\cdot 17^{10} + \left(8 a^{2} + 11 a + 16\right)\cdot 17^{11} + \left(11 a^{2} + 6 a + 1\right)\cdot 17^{12} + \left(15 a^{2} + 5 a + 16\right)\cdot 17^{13} + \left(3 a^{2} + 13 a + 13\right)\cdot 17^{14} + \left(3 a^{2} + 14 a + 7\right)\cdot 17^{15} + \left(10 a + 11\right)\cdot 17^{16} + \left(6 a^{2} + 10 a + 9\right)\cdot 17^{17} + \left(4 a^{2} + 6 a + 8\right)\cdot 17^{18} + \left(4 a^{2} + 2 a + 8\right)\cdot 17^{19} + \left(2 a^{2} + 9 a + 1\right)\cdot 17^{20} + \left(8 a^{2} + 9 a + 11\right)\cdot 17^{21} + \left(9 a^{2} + 11 a\right)\cdot 17^{22} + \left(9 a^{2} + 11 a + 12\right)\cdot 17^{23} + \left(2 a^{2} + 4 a + 1\right)\cdot 17^{24} +O\left(17^{ 25 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 14 + 9\cdot 17 + 4\cdot 17^{2} + 7\cdot 17^{3} + 14\cdot 17^{4} + 9\cdot 17^{5} + 5\cdot 17^{6} + 2\cdot 17^{7} + 16\cdot 17^{8} + 6\cdot 17^{9} + 5\cdot 17^{10} + 4\cdot 17^{11} + 14\cdot 17^{12} + 3\cdot 17^{14} + 17^{15} + 13\cdot 17^{16} + 14\cdot 17^{17} + 9\cdot 17^{18} + 10\cdot 17^{19} + 11\cdot 17^{20} + 5\cdot 17^{21} + 14\cdot 17^{22} + 7\cdot 17^{23} + 2\cdot 17^{24} +O\left(17^{ 25 }\right)$ |
| $r_{ 9 }$ |
$=$ |
$ 2 + 2\cdot 17 + 6\cdot 17^{2} + 14\cdot 17^{3} + 13\cdot 17^{4} + 15\cdot 17^{5} + 15\cdot 17^{7} + 14\cdot 17^{8} + 17^{9} + 4\cdot 17^{10} + 12\cdot 17^{11} + 10\cdot 17^{12} + 7\cdot 17^{13} + 8\cdot 17^{14} + 7\cdot 17^{15} + 3\cdot 17^{16} + 4\cdot 17^{17} + 5\cdot 17^{18} + 4\cdot 17^{19} + 5\cdot 17^{20} + 12\cdot 17^{21} + 8\cdot 17^{22} + 13\cdot 17^{23} +O\left(17^{ 25 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 9 }$
| Cycle notation |
| $(1,9,8)(5,7,6)$ |
| $(1,2,5,9,4,6,8,3,7)$ |
| $(2,4,3)(5,7,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 9 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $1$ | $3$ | $(1,9,8)(2,4,3)(5,6,7)$ | $-3 \zeta_{3} - 3$ |
| $1$ | $3$ | $(1,8,9)(2,3,4)(5,7,6)$ | $3 \zeta_{3}$ |
| $3$ | $3$ | $(1,9,8)(5,7,6)$ | $0$ |
| $3$ | $3$ | $(1,8,9)(5,6,7)$ | $0$ |
| $3$ | $9$ | $(1,2,5,9,4,6,8,3,7)$ | $0$ |
| $3$ | $9$ | $(1,5,4,8,7,2,9,6,3)$ | $0$ |
| $3$ | $9$ | $(1,4,5,9,3,6,8,2,7)$ | $0$ |
| $3$ | $9$ | $(1,5,3,8,7,4,9,6,2)$ | $0$ |
| $3$ | $9$ | $(1,3,5,9,2,6,8,4,7)$ | $0$ |
| $3$ | $9$ | $(1,5,2,8,7,3,9,6,4)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.