Properties

Label 3.3e9_19e2.9t6.1c2
Dimension 3
Group $C_9:C_3$
Conductor $ 3^{9} \cdot 19^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_9:C_3$
Conductor:$7105563= 3^{9} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{9} - 72 x^{7} - 135 x^{6} + 1539 x^{5} + 5472 x^{4} - 5016 x^{3} - 48735 x^{2} - 77976 x - 39349 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_9:C_3$
Parity: Even
Determinant: 1.3e2.3t1.1c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 25.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 5\cdot 17 + 6\cdot 17^{2} + 12\cdot 17^{3} + 5\cdot 17^{4} + 8\cdot 17^{5} + 10\cdot 17^{6} + 16\cdot 17^{7} + 2\cdot 17^{8} + 8\cdot 17^{9} + 7\cdot 17^{10} + 9\cdot 17^{12} + 8\cdot 17^{13} + 5\cdot 17^{14} + 8\cdot 17^{15} + 15\cdot 17^{17} + 17^{18} + 2\cdot 17^{19} + 16\cdot 17^{21} + 10\cdot 17^{22} + 12\cdot 17^{23} + 13\cdot 17^{24} +O\left(17^{ 25 }\right)$
$r_{ 2 }$ $=$ $ 13 a + \left(6 a^{2} + 10 a + 4\right)\cdot 17 + \left(13 a^{2} + 3 a + 3\right)\cdot 17^{2} + \left(8 a^{2} + 7 a\right)\cdot 17^{3} + \left(5 a + 6\right)\cdot 17^{4} + \left(a^{2} + 5 a + 6\right)\cdot 17^{5} + \left(a^{2} + 2 a + 6\right)\cdot 17^{6} + \left(8 a^{2} + 14 a + 5\right)\cdot 17^{7} + \left(15 a^{2} + 11 a + 10\right)\cdot 17^{8} + \left(4 a^{2} + 6 a + 14\right)\cdot 17^{9} + \left(a^{2} + 9 a\right)\cdot 17^{10} + \left(16 a^{2} + 7 a + 5\right)\cdot 17^{11} + \left(15 a^{2} + a + 16\right)\cdot 17^{12} + \left(9 a^{2} + 3 a\right)\cdot 17^{13} + \left(9 a^{2} + 9 a + 12\right)\cdot 17^{14} + \left(7 a^{2} + 2 a + 10\right)\cdot 17^{15} + \left(6 a^{2} + 13 a + 15\right)\cdot 17^{16} + \left(4 a^{2} + 2\right)\cdot 17^{17} + \left(11 a^{2} + 7 a + 13\right)\cdot 17^{18} + \left(15 a^{2} + 8 a + 4\right)\cdot 17^{19} + \left(2 a^{2} + 12 a + 13\right)\cdot 17^{20} + \left(3 a^{2} + 6 a + 7\right)\cdot 17^{21} + \left(9 a^{2} + 14 a\right)\cdot 17^{22} + \left(6 a^{2} + 12 a + 10\right)\cdot 17^{23} + \left(14 a^{2} + 10 a + 9\right)\cdot 17^{24} +O\left(17^{ 25 }\right)$
$r_{ 3 }$ $=$ $ 16 a^{2} + 6 a + 5 + \left(6 a^{2} + 14 a + 10\right)\cdot 17 + \left(2 a^{2} + 16 a + 1\right)\cdot 17^{2} + \left(a^{2} + a + 12\right)\cdot 17^{3} + \left(8 a^{2} + a + 16\right)\cdot 17^{4} + \left(9 a^{2} + 8 a + 11\right)\cdot 17^{5} + \left(2 a^{2} + 12 a + 1\right)\cdot 17^{6} + \left(2 a^{2} + 12 a + 7\right)\cdot 17^{7} + \left(8 a^{2} + 5\right)\cdot 17^{8} + \left(4 a^{2} + a + 14\right)\cdot 17^{9} + \left(5 a^{2} + a + 14\right)\cdot 17^{10} + \left(14 a^{2} + 6 a + 3\right)\cdot 17^{11} + \left(9 a^{2} + 5 a + 12\right)\cdot 17^{12} + \left(a^{2} + 13 a + 6\right)\cdot 17^{13} + \left(15 a^{2} + 16 a + 4\right)\cdot 17^{14} + \left(13 a^{2} + 6 a + 9\right)\cdot 17^{15} + \left(14 a^{2} + 2 a + 15\right)\cdot 17^{16} + \left(6 a^{2} + 6 a + 15\right)\cdot 17^{17} + \left(8 a^{2} + 8 a + 16\right)\cdot 17^{18} + \left(4 a^{2} + 12 a + 2\right)\cdot 17^{19} + \left(2 a^{2} + 6 a + 7\right)\cdot 17^{20} + \left(7 a^{2} + 2 a + 10\right)\cdot 17^{21} + \left(9 a^{2} + 4 a\right)\cdot 17^{22} + \left(8 a^{2} + 7 a\right)\cdot 17^{23} + \left(14 a^{2} + 13 a + 4\right)\cdot 17^{24} +O\left(17^{ 25 }\right)$
$r_{ 4 }$ $=$ $ a^{2} + 15 a + 12 + \left(4 a^{2} + 8 a + 2\right)\cdot 17 + \left(a^{2} + 13 a + 12\right)\cdot 17^{2} + \left(7 a^{2} + 7 a + 4\right)\cdot 17^{3} + \left(8 a^{2} + 10 a + 11\right)\cdot 17^{4} + \left(6 a^{2} + 3 a + 15\right)\cdot 17^{5} + \left(13 a^{2} + 2 a + 8\right)\cdot 17^{6} + \left(6 a^{2} + 7 a + 4\right)\cdot 17^{7} + \left(10 a^{2} + 4 a + 1\right)\cdot 17^{8} + \left(7 a^{2} + 9 a + 5\right)\cdot 17^{9} + \left(10 a^{2} + 6 a + 1\right)\cdot 17^{10} + \left(3 a^{2} + 3 a + 8\right)\cdot 17^{11} + \left(8 a^{2} + 10 a + 5\right)\cdot 17^{12} + \left(5 a^{2} + 9\right)\cdot 17^{13} + \left(9 a^{2} + 8 a\right)\cdot 17^{14} + \left(12 a^{2} + 7 a + 14\right)\cdot 17^{15} + \left(12 a^{2} + a + 2\right)\cdot 17^{16} + \left(5 a^{2} + 10 a + 15\right)\cdot 17^{17} + \left(14 a^{2} + a + 3\right)\cdot 17^{18} + \left(13 a^{2} + 13 a + 9\right)\cdot 17^{19} + \left(11 a^{2} + 14 a + 13\right)\cdot 17^{20} + \left(6 a^{2} + 7 a + 15\right)\cdot 17^{21} + \left(15 a^{2} + 15 a + 15\right)\cdot 17^{22} + \left(a^{2} + 13 a + 6\right)\cdot 17^{23} + \left(5 a^{2} + 9 a + 3\right)\cdot 17^{24} +O\left(17^{ 25 }\right)$
$r_{ 5 }$ $=$ $ 15 a + \left(7 a^{2} + a + 16\right)\cdot 17 + \left(8 a^{2} + 5 a + 16\right)\cdot 17^{2} + \left(13 a^{2} + 8 a + 8\right)\cdot 17^{3} + \left(8 a^{2} + 3 a + 11\right)\cdot 17^{4} + \left(3 a^{2} + 13\right)\cdot 17^{5} + \left(7 a^{2} + a + 4\right)\cdot 17^{6} + \left(6 a^{2} + 7 a + 4\right)\cdot 17^{7} + \left(7 a^{2} + 13 a + 16\right)\cdot 17^{8} + \left(14 a^{2} + 15 a + 3\right)\cdot 17^{9} + \left(13 a^{2} + 4 a + 9\right)\cdot 17^{10} + \left(16 a^{2} + 15 a + 5\right)\cdot 17^{11} + \left(10 a^{2} + 7 a + 7\right)\cdot 17^{12} + \left(3 a^{2} + 2\right)\cdot 17^{13} + \left(a^{2} + 6 a + 12\right)\cdot 17^{14} + \left(11 a^{2} + 4 a + 1\right)\cdot 17^{15} + \left(16 a^{2} + 8 a + 11\right)\cdot 17^{16} + \left(5 a^{2} + 9 a + 9\right)\cdot 17^{17} + \left(13 a^{2} + 14 a + 14\right)\cdot 17^{18} + \left(10 a^{2} + 6 a + 12\right)\cdot 17^{19} + \left(16 a^{2} + 9 a + 16\right)\cdot 17^{20} + \left(9 a + 11\right)\cdot 17^{21} + \left(12 a^{2} + 5 a + 13\right)\cdot 17^{22} + \left(7 a^{2} + 14 a + 10\right)\cdot 17^{23} + \left(9 a^{2} + 12 a\right)\cdot 17^{24} +O\left(17^{ 25 }\right)$
$r_{ 6 }$ $=$ $ 8 a^{2} + 3 a + 11 + \left(2 a^{2} + 14 a + 1\right)\cdot 17 + \left(11 a^{2} + a + 13\right)\cdot 17^{2} + \left(7 a^{2} + 2 a + 10\right)\cdot 17^{3} + \left(a^{2} + 12 a + 6\right)\cdot 17^{4} + \left(2 a^{2} + 13 a + 1\right)\cdot 17^{5} + \left(10 a^{2} + 15 a + 1\right)\cdot 17^{6} + \left(11 a^{2} + 4 a + 2\right)\cdot 17^{7} + \left(4 a + 6\right)\cdot 17^{8} + \left(12 a^{2} + 6 a + 2\right)\cdot 17^{9} + \left(2 a^{2} + 2 a + 13\right)\cdot 17^{10} + \left(9 a^{2} + 7 a + 11\right)\cdot 17^{11} + \left(11 a^{2} + 2 a + 7\right)\cdot 17^{12} + \left(14 a^{2} + 11 a + 15\right)\cdot 17^{13} + \left(11 a^{2} + 14 a + 7\right)\cdot 17^{14} + \left(2 a^{2} + 14 a + 7\right)\cdot 17^{15} + \left(14 a + 11\right)\cdot 17^{16} + \left(5 a^{2} + 13 a + 14\right)\cdot 17^{17} + \left(16 a^{2} + 12 a + 10\right)\cdot 17^{18} + \left(a^{2} + 7 a + 12\right)\cdot 17^{19} + \left(15 a^{2} + 15 a + 15\right)\cdot 17^{20} + \left(7 a^{2} + 14 a + 10\right)\cdot 17^{21} + \left(12 a^{2} + 16 a + 2\right)\cdot 17^{22} + \left(16 a^{2} + 7 a + 11\right)\cdot 17^{23} + \left(4 a^{2} + 16 a + 14\right)\cdot 17^{24} +O\left(17^{ 25 }\right)$
$r_{ 7 }$ $=$ $ 9 a^{2} + 16 a + 6 + \left(7 a^{2} + 16\right)\cdot 17 + \left(14 a^{2} + 10 a + 3\right)\cdot 17^{2} + \left(12 a^{2} + 6 a + 14\right)\cdot 17^{3} + \left(6 a^{2} + a + 15\right)\cdot 17^{4} + \left(11 a^{2} + 3 a + 1\right)\cdot 17^{5} + \left(16 a^{2} + 11\right)\cdot 17^{6} + \left(15 a^{2} + 5 a + 10\right)\cdot 17^{7} + \left(8 a^{2} + 16 a + 11\right)\cdot 17^{8} + \left(7 a^{2} + 11 a + 10\right)\cdot 17^{9} + \left(9 a + 11\right)\cdot 17^{10} + \left(8 a^{2} + 11 a + 16\right)\cdot 17^{11} + \left(11 a^{2} + 6 a + 1\right)\cdot 17^{12} + \left(15 a^{2} + 5 a + 16\right)\cdot 17^{13} + \left(3 a^{2} + 13 a + 13\right)\cdot 17^{14} + \left(3 a^{2} + 14 a + 7\right)\cdot 17^{15} + \left(10 a + 11\right)\cdot 17^{16} + \left(6 a^{2} + 10 a + 9\right)\cdot 17^{17} + \left(4 a^{2} + 6 a + 8\right)\cdot 17^{18} + \left(4 a^{2} + 2 a + 8\right)\cdot 17^{19} + \left(2 a^{2} + 9 a + 1\right)\cdot 17^{20} + \left(8 a^{2} + 9 a + 11\right)\cdot 17^{21} + \left(9 a^{2} + 11 a\right)\cdot 17^{22} + \left(9 a^{2} + 11 a + 12\right)\cdot 17^{23} + \left(2 a^{2} + 4 a + 1\right)\cdot 17^{24} +O\left(17^{ 25 }\right)$
$r_{ 8 }$ $=$ $ 14 + 9\cdot 17 + 4\cdot 17^{2} + 7\cdot 17^{3} + 14\cdot 17^{4} + 9\cdot 17^{5} + 5\cdot 17^{6} + 2\cdot 17^{7} + 16\cdot 17^{8} + 6\cdot 17^{9} + 5\cdot 17^{10} + 4\cdot 17^{11} + 14\cdot 17^{12} + 3\cdot 17^{14} + 17^{15} + 13\cdot 17^{16} + 14\cdot 17^{17} + 9\cdot 17^{18} + 10\cdot 17^{19} + 11\cdot 17^{20} + 5\cdot 17^{21} + 14\cdot 17^{22} + 7\cdot 17^{23} + 2\cdot 17^{24} +O\left(17^{ 25 }\right)$
$r_{ 9 }$ $=$ $ 2 + 2\cdot 17 + 6\cdot 17^{2} + 14\cdot 17^{3} + 13\cdot 17^{4} + 15\cdot 17^{5} + 15\cdot 17^{7} + 14\cdot 17^{8} + 17^{9} + 4\cdot 17^{10} + 12\cdot 17^{11} + 10\cdot 17^{12} + 7\cdot 17^{13} + 8\cdot 17^{14} + 7\cdot 17^{15} + 3\cdot 17^{16} + 4\cdot 17^{17} + 5\cdot 17^{18} + 4\cdot 17^{19} + 5\cdot 17^{20} + 12\cdot 17^{21} + 8\cdot 17^{22} + 13\cdot 17^{23} +O\left(17^{ 25 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,9,8)(5,7,6)$
$(1,2,5,9,4,6,8,3,7)$
$(2,4,3)(5,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$1$$3$$(1,9,8)(2,4,3)(5,6,7)$$-3 \zeta_{3} - 3$
$1$$3$$(1,8,9)(2,3,4)(5,7,6)$$3 \zeta_{3}$
$3$$3$$(1,9,8)(5,7,6)$$0$
$3$$3$$(1,8,9)(5,6,7)$$0$
$3$$9$$(1,2,5,9,4,6,8,3,7)$$0$
$3$$9$$(1,5,4,8,7,2,9,6,3)$$0$
$3$$9$$(1,4,5,9,3,6,8,2,7)$$0$
$3$$9$$(1,5,3,8,7,4,9,6,2)$$0$
$3$$9$$(1,3,5,9,2,6,8,4,7)$$0$
$3$$9$$(1,5,2,8,7,3,9,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.