Properties

Label 3.3e6_7e2_13e2.9t7.10c1
Dimension 3
Group $C_3^2:C_3$
Conductor $ 3^{6} \cdot 7^{2} \cdot 13^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_3^2:C_3$
Conductor:$6036849= 3^{6} \cdot 7^{2} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{9} - 57 x^{7} - 20 x^{6} + 936 x^{5} + 858 x^{4} - 4446 x^{3} - 7605 x^{2} - 3042 x - 169 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_3^2:C_3$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{3} + 2 x + 27 $
Roots:
$r_{ 1 }$ $=$ $ 4 + 21\cdot 29^{2} + 8\cdot 29^{3} + 20\cdot 29^{4} + 19\cdot 29^{5} + 12\cdot 29^{6} + 6\cdot 29^{7} + 4\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 27 a^{2} + a + 7 + \left(13 a^{2} + 2 a + 28\right)\cdot 29 + \left(15 a^{2} + 19 a + 10\right)\cdot 29^{2} + \left(19 a^{2} + 22 a + 16\right)\cdot 29^{3} + \left(19 a^{2} + 8 a + 16\right)\cdot 29^{4} + \left(23 a^{2} + 26 a + 2\right)\cdot 29^{5} + \left(13 a^{2} + 12 a + 28\right)\cdot 29^{6} + \left(10 a^{2} + 18 a + 13\right)\cdot 29^{7} + \left(11 a^{2} + 27 a + 5\right)\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 12 a^{2} + 6 a + 16 + \left(19 a^{2} + a + 6\right)\cdot 29 + \left(24 a^{2} + 5 a + 23\right)\cdot 29^{2} + \left(15 a^{2} + 25 a + 1\right)\cdot 29^{3} + \left(4 a^{2} + 8 a + 6\right)\cdot 29^{4} + \left(19 a^{2} + 12 a + 6\right)\cdot 29^{5} + \left(21 a^{2} + 20 a + 19\right)\cdot 29^{6} + \left(6 a^{2} + 18 a + 18\right)\cdot 29^{7} + \left(4 a^{2} + 4 a + 5\right)\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 18 + 22\cdot 29 + 5\cdot 29^{2} + 4\cdot 29^{3} + 18\cdot 29^{4} + 5\cdot 29^{5} + 6\cdot 29^{6} + 9\cdot 29^{7} + 27\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 7 + 6\cdot 29 + 2\cdot 29^{2} + 16\cdot 29^{3} + 19\cdot 29^{4} + 3\cdot 29^{5} + 10\cdot 29^{6} + 13\cdot 29^{7} + 26\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 21 a^{2} + 23 a + 28 + \left(19 a^{2} + 22 a + 6\right)\cdot 29 + \left(26 a^{2} + 13 a + 16\right)\cdot 29^{2} + \left(24 a^{2} + 19 a + 23\right)\cdot 29^{3} + \left(8 a^{2} + 21 a + 11\right)\cdot 29^{4} + \left(24 a^{2} + 17 a + 3\right)\cdot 29^{5} + \left(7 a^{2} + 4 a + 20\right)\cdot 29^{6} + \left(16 a^{2} + 16 a + 21\right)\cdot 29^{7} + \left(8 a^{2} + 16 a + 1\right)\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 19 a^{2} + 22 a + 6 + \left(24 a^{2} + 25 a + 23\right)\cdot 29 + \left(17 a^{2} + 4 a + 23\right)\cdot 29^{2} + \left(22 a^{2} + 10 a + 10\right)\cdot 29^{3} + \left(4 a^{2} + 11 a + 6\right)\cdot 29^{4} + \left(15 a^{2} + 19 a + 20\right)\cdot 29^{5} + \left(22 a^{2} + 24 a + 10\right)\cdot 29^{6} + \left(11 a^{2} + 20 a + 25\right)\cdot 29^{7} + \left(13 a^{2} + 25 a + 17\right)\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 2 a^{2} + 11 a + 22 + \left(5 a^{2} + 4 a + 6\right)\cdot 29 + \left(7 a^{2} + 15 a + 19\right)\cdot 29^{2} + \left(20 a^{2} + 21 a + 7\right)\cdot 29^{3} + \left(19 a^{2} + a + 26\right)\cdot 29^{4} + \left(27 a^{2} + 15 a + 7\right)\cdot 29^{5} + \left(16 a^{2} + 13 a + 3\right)\cdot 29^{6} + \left(14 a^{2} + 9 a\right)\cdot 29^{7} + \left(9 a^{2} + 14 a + 3\right)\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 9 }$ $=$ $ 6 a^{2} + 24 a + 8 + \left(4 a^{2} + a + 15\right)\cdot 29 + \left(24 a^{2} + 22\right)\cdot 29^{2} + \left(12 a^{2} + 17 a + 26\right)\cdot 29^{3} + \left(5 a + 19\right)\cdot 29^{4} + \left(6 a^{2} + 25 a + 17\right)\cdot 29^{5} + \left(4 a^{2} + 10 a + 5\right)\cdot 29^{6} + \left(27 a^{2} + 3 a + 7\right)\cdot 29^{7} + \left(10 a^{2} + 27 a + 24\right)\cdot 29^{8} +O\left(29^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(2,7,3)(6,8,9)$
$(1,5,4)(2,7,3)$
$(1,9,2)(3,5,6)(4,8,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$1$$3$$(1,5,4)(2,3,7)(6,8,9)$$3 \zeta_{3}$
$1$$3$$(1,4,5)(2,7,3)(6,9,8)$$-3 \zeta_{3} - 3$
$3$$3$$(1,9,2)(3,5,6)(4,8,7)$$0$
$3$$3$$(1,2,9)(3,6,5)(4,7,8)$$0$
$3$$3$$(1,5,4)(2,7,3)$$0$
$3$$3$$(1,4,5)(2,3,7)$$0$
$3$$3$$(1,6,2)(3,5,8)(4,9,7)$$0$
$3$$3$$(1,2,6)(3,8,5)(4,7,9)$$0$
$3$$3$$(1,8,2)(3,5,9)(4,6,7)$$0$
$3$$3$$(1,2,8)(3,9,5)(4,7,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.