Properties

Label 3.3e6_7e2.6t8.3
Dimension 3
Group $S_4$
Conductor $ 3^{6} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$35721= 3^{6} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{6} + 18 x^{4} + 45 x^{2} + 48 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 18 + \left(12 a + 9\right)\cdot 31 + \left(10 a + 11\right)\cdot 31^{2} + \left(26 a + 25\right)\cdot 31^{3} + \left(15 a + 12\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 + 2\cdot 31 + 4\cdot 31^{2} + 17\cdot 31^{3} + 13\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 19 + \left(8 a + 28\right)\cdot 31 + \left(19 a + 15\right)\cdot 31^{2} + \left(28 a + 27\right)\cdot 31^{3} + 28 a\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 18 a + 13 + \left(18 a + 21\right)\cdot 31 + \left(20 a + 19\right)\cdot 31^{2} + \left(4 a + 5\right)\cdot 31^{3} + \left(15 a + 18\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 22 + 28\cdot 31 + 26\cdot 31^{2} + 13\cdot 31^{3} + 17\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 19 a + 12 + \left(22 a + 2\right)\cdot 31 + \left(11 a + 15\right)\cdot 31^{2} + \left(2 a + 3\right)\cdot 31^{3} + \left(2 a + 30\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(3,6)$
$(2,5)(3,6)$
$(1,6,2)(3,5,4)$
$(2,6,5,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,4)(3,6)$ $-1$
$6$ $2$ $(1,4)(2,3)(5,6)$ $-1$
$8$ $3$ $(1,6,2)(3,5,4)$ $0$
$6$ $4$ $(2,6,5,3)$ $1$
The blue line marks the conjugacy class containing complex conjugation.