Properties

Label 3.3e6_5e2.6t8.1
Dimension 3
Group $S_4$
Conductor $ 3^{6} \cdot 5^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$18225= 3^{6} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 223 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 38 + 69\cdot 223 + 123\cdot 223^{2} + 59\cdot 223^{3} + 61\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 83 + 56\cdot 223 + 15\cdot 223^{2} + 123\cdot 223^{3} + 208\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 123 + 222\cdot 223 + 177\cdot 223^{2} + 193\cdot 223^{3} + 130\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 203 + 97\cdot 223 + 129\cdot 223^{2} + 69\cdot 223^{3} + 45\cdot 223^{4} +O\left(223^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.