Properties

Label 3.3e6_37e2.9t7.4c2
Dimension 3
Group $C_3^2:C_3$
Conductor $ 3^{6} \cdot 37^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_3^2:C_3$
Conductor:$998001= 3^{6} \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} - 57 x^{7} + 126 x^{6} + 978 x^{5} - 1029 x^{4} - 6717 x^{3} + 465 x^{2} + 15756 x + 9989 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_3^2:C_3$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{3} + 5 x + 57 $
Roots:
$r_{ 1 }$ $=$ $ 3 a^{2} + a + 47 + \left(56 a^{2} + 20 a + 8\right)\cdot 59 + \left(16 a^{2} + 24 a + 40\right)\cdot 59^{2} + \left(29 a^{2} + 52 a + 37\right)\cdot 59^{3} + \left(17 a^{2} + 56 a + 5\right)\cdot 59^{4} + \left(9 a^{2} + 49\right)\cdot 59^{5} + \left(21 a^{2} + 49 a + 15\right)\cdot 59^{6} + \left(39 a^{2} + 43 a + 39\right)\cdot 59^{7} +O\left(59^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 58 + 2\cdot 59 + 35\cdot 59^{2} + 24\cdot 59^{4} + 48\cdot 59^{5} + 13\cdot 59^{6} + 3\cdot 59^{7} +O\left(59^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 58 a^{2} + 50 a + 58 + \left(46 a + 54\right)\cdot 59 + \left(16 a^{2} + 28 a + 24\right)\cdot 59^{2} + \left(21 a^{2} + 25 a + 38\right)\cdot 59^{3} + \left(55 a^{2} + 54 a + 29\right)\cdot 59^{4} + \left(38 a^{2} + 7 a + 14\right)\cdot 59^{5} + \left(33 a^{2} + 4\right)\cdot 59^{6} + \left(14 a^{2} + 8 a\right)\cdot 59^{7} +O\left(59^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 18 + 29\cdot 59 + 52\cdot 59^{2} + 31\cdot 59^{3} + 8\cdot 59^{4} + 44\cdot 59^{6} + 38\cdot 59^{7} +O\left(59^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 41 a^{2} + 56 a + 36 + \left(26 a^{2} + 42 a + 48\right)\cdot 59 + \left(10 a^{2} + 27 a + 57\right)\cdot 59^{2} + \left(25 a^{2} + 43 a + 23\right)\cdot 59^{3} + \left(57 a^{2} + 18 a + 40\right)\cdot 59^{4} + \left(14 a^{2} + 15 a + 28\right)\cdot 59^{5} + \left(4 a^{2} + 17 a + 18\right)\cdot 59^{6} + \left(50 a^{2} + 42 a + 55\right)\cdot 59^{7} +O\left(59^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 41 a^{2} + 47 a + 21 + \left(43 a^{2} + 7 a + 20\right)\cdot 59 + \left(53 a^{2} + 38 a + 52\right)\cdot 59^{2} + \left(16 a^{2} + 43 a + 23\right)\cdot 59^{3} + \left(57 a^{2} + 29 a + 16\right)\cdot 59^{4} + \left(9 a^{2} + 27 a + 16\right)\cdot 59^{5} + \left(57 a^{2} + 52 a + 43\right)\cdot 59^{6} + \left(32 a^{2} + 49 a + 41\right)\cdot 59^{7} +O\left(59^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 45 + 51\cdot 59 + 46\cdot 59^{2} + 8\cdot 59^{3} + 7\cdot 59^{5} + 17\cdot 59^{6} + 25\cdot 59^{7} +O\left(59^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 19 a^{2} + 21 a + 46 + \left(14 a^{2} + 4 a + 20\right)\cdot 59 + \left(48 a^{2} + 51 a + 14\right)\cdot 59^{2} + \left(20 a^{2} + 48 a + 17\right)\cdot 59^{3} + \left(5 a^{2} + 33 a + 20\right)\cdot 59^{4} + \left(10 a^{2} + 23 a + 36\right)\cdot 59^{5} + \left(27 a^{2} + 6 a + 41\right)\cdot 59^{6} + \left(11 a^{2} + a + 48\right)\cdot 59^{7} +O\left(59^{ 8 }\right)$
$r_{ 9 }$ $=$ $ 15 a^{2} + 2 a + 28 + \left(35 a^{2} + 55 a + 57\right)\cdot 59 + \left(31 a^{2} + 6 a + 29\right)\cdot 59^{2} + \left(4 a^{2} + 22 a + 53\right)\cdot 59^{3} + \left(43 a^{2} + 42 a + 31\right)\cdot 59^{4} + \left(34 a^{2} + 42 a + 35\right)\cdot 59^{5} + \left(33 a^{2} + 51 a + 37\right)\cdot 59^{6} + \left(28 a^{2} + 31 a + 42\right)\cdot 59^{7} +O\left(59^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3,2)(4,5,6)(7,9,8)$
$(1,9,5)(3,6,8)$
$(2,4,7)(3,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$1$$3$$(1,5,9)(2,4,7)(3,6,8)$$-3 \zeta_{3} - 3$
$1$$3$$(1,9,5)(2,7,4)(3,8,6)$$3 \zeta_{3}$
$3$$3$$(1,3,2)(4,5,6)(7,9,8)$$0$
$3$$3$$(1,2,3)(4,6,5)(7,8,9)$$0$
$3$$3$$(1,9,5)(3,6,8)$$0$
$3$$3$$(1,5,9)(3,8,6)$$0$
$3$$3$$(1,8,2)(3,4,5)(6,7,9)$$0$
$3$$3$$(1,2,8)(3,5,4)(6,9,7)$$0$
$3$$3$$(1,7,8)(2,3,5)(4,6,9)$$0$
$3$$3$$(1,8,7)(2,5,3)(4,9,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.