Properties

Label 3.3e6_37e2.9t7.2
Dimension 3
Group $C_3^2:C_3$
Conductor $ 3^{6} \cdot 37^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_3^2:C_3$
Conductor:$998001= 3^{6} \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{9} - 39 x^{7} - 50 x^{6} + 396 x^{5} + 930 x^{4} - 636 x^{3} - 3825 x^{2} - 4050 x - 1375 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_3^2:C_3$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ 9\cdot 11 + 10\cdot 11^{2} + 5\cdot 11^{3} + 8\cdot 11^{4} + 10\cdot 11^{5} + 10\cdot 11^{6} + 3\cdot 11^{7} + 7\cdot 11^{8} + 3\cdot 11^{9} + 3\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 7 a^{2} + 2 a + 2 + \left(5 a^{2} + 5 a\right)\cdot 11 + \left(3 a^{2} + 4 a + 1\right)\cdot 11^{2} + \left(6 a^{2} + 1\right)\cdot 11^{3} + \left(3 a^{2} + 6 a + 1\right)\cdot 11^{4} + \left(7 a^{2} + 10 a + 6\right)\cdot 11^{5} + \left(2 a^{2} + 5 a + 3\right)\cdot 11^{6} + \left(7 a^{2} + 4 a + 2\right)\cdot 11^{8} + \left(5 a^{2} + a\right)\cdot 11^{9} + \left(8 a^{2} + a + 4\right)\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 10 a^{2} + 3 a + 6 + \left(3 a^{2} + 10 a + 1\right)\cdot 11 + \left(3 a^{2} + 2 a + 8\right)\cdot 11^{2} + \left(7 a^{2} + 3 a + 9\right)\cdot 11^{3} + \left(9 a^{2} + 4 a + 1\right)\cdot 11^{4} + \left(5 a^{2} + 7 a + 4\right)\cdot 11^{5} + \left(10 a^{2} + 5 a + 10\right)\cdot 11^{6} + \left(9 a^{2} + 5\right)\cdot 11^{7} + \left(5 a^{2} + a\right)\cdot 11^{8} + \left(8 a^{2} + 4 a + 4\right)\cdot 11^{9} + \left(a + 8\right)\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 5 + 6\cdot 11 + 3\cdot 11^{2} + 6\cdot 11^{3} + 2\cdot 11^{4} + 9\cdot 11^{5} + 8\cdot 11^{6} + 8\cdot 11^{8} + 3\cdot 11^{9} + 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 5 a^{2} + 6 a + 3 + \left(a^{2} + 6 a + 9\right)\cdot 11 + \left(4 a^{2} + 3 a + 1\right)\cdot 11^{2} + \left(8 a^{2} + 7 a\right)\cdot 11^{3} + \left(8 a^{2} + 8\right)\cdot 11^{4} + \left(8 a^{2} + 4 a\right)\cdot 11^{5} + \left(8 a^{2} + 10 a + 8\right)\cdot 11^{6} + \left(9 a + 4\right)\cdot 11^{7} + \left(9 a^{2} + 5 a + 8\right)\cdot 11^{8} + \left(7 a^{2} + 5 a + 6\right)\cdot 11^{9} + \left(a^{2} + 8 a + 9\right)\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 7 a + \left(10 a^{2} + a + 6\right)\cdot 11 + \left(7 a^{2} + a + 10\right)\cdot 11^{2} + \left(8 a^{2} + 6 a + 7\right)\cdot 11^{3} + \left(8 a^{2} + 3 a\right)\cdot 11^{4} + \left(8 a^{2} + 6 a + 8\right)\cdot 11^{5} + \left(10 a^{2} + 3 a + 10\right)\cdot 11^{6} + \left(4 a^{2} + 6 a + 2\right)\cdot 11^{7} + \left(8 a + 4\right)\cdot 11^{8} + \left(10 a^{2} + 3 a + 2\right)\cdot 11^{9} + \left(6 a^{2} + 4 a + 9\right)\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 4 a^{2} + 8 a + 9 + \left(9 a^{2} + 8 a + 8\right)\cdot 11 + \left(2 a^{2} + 9 a + 3\right)\cdot 11^{2} + \left(8 a^{2} + 6 a + 7\right)\cdot 11^{3} + \left(9 a^{2} + 8 a + 5\right)\cdot 11^{4} + \left(6 a^{2} + 5 a + 5\right)\cdot 11^{5} + \left(4 a^{2} + 10 a + 2\right)\cdot 11^{6} + \left(5 a^{2} + 8 a + 7\right)\cdot 11^{7} + \left(2 a^{2} + 10 a + 10\right)\cdot 11^{8} + \left(2 a^{2} + a + 2\right)\cdot 11^{9} + \left(2 a^{2} + 4 a + 10\right)\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 7 a^{2} + 7 a + 2 + \left(2 a^{2} + 7\right)\cdot 11 + 7\cdot 11^{2} + \left(5 a^{2} + 9 a + 6\right)\cdot 11^{3} + \left(3 a^{2} + 9 a + 4\right)\cdot 11^{4} + \left(6 a^{2} + 9 a + 8\right)\cdot 11^{5} + \left(6 a^{2} + 7 a + 8\right)\cdot 11^{6} + 6 a\cdot 11^{7} + \left(8 a^{2} + 2 a + 7\right)\cdot 11^{8} + \left(9 a^{2} + 5 a + 5\right)\cdot 11^{9} + \left(a^{2} + 2 a + 2\right)\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 9 }$ $=$ $ 6 + 6\cdot 11 + 7\cdot 11^{2} + 9\cdot 11^{3} + 10\cdot 11^{4} + 11^{5} + 2\cdot 11^{6} + 6\cdot 11^{7} + 6\cdot 11^{8} + 3\cdot 11^{9} + 6\cdot 11^{10} +O\left(11^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,9,4)(2,5,3)$
$(2,3,5)(6,8,7)$
$(1,6,2)(3,9,7)(4,8,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$1$ $3$ $(1,4,9)(2,5,3)(6,8,7)$ $3 \zeta_{3}$ $-3 \zeta_{3} - 3$
$1$ $3$ $(1,9,4)(2,3,5)(6,7,8)$ $-3 \zeta_{3} - 3$ $3 \zeta_{3}$
$3$ $3$ $(1,6,2)(3,9,7)(4,8,5)$ $0$ $0$
$3$ $3$ $(1,2,6)(3,7,9)(4,5,8)$ $0$ $0$
$3$ $3$ $(1,9,4)(2,5,3)$ $0$ $0$
$3$ $3$ $(1,4,9)(2,3,5)$ $0$ $0$
$3$ $3$ $(1,8,2)(3,9,6)(4,7,5)$ $0$ $0$
$3$ $3$ $(1,2,8)(3,6,9)(4,5,7)$ $0$ $0$
$3$ $3$ $(1,7,2)(3,9,8)(4,6,5)$ $0$ $0$
$3$ $3$ $(1,2,7)(3,8,9)(4,5,6)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.