Properties

Label 3.3e6_37e2.9t7.1
Dimension 3
Group $C_3^2:C_3$
Conductor $ 3^{6} \cdot 37^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_3^2:C_3$
Conductor:$998001= 3^{6} \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} - 21 x^{7} + 63 x^{6} + 141 x^{5} - 435 x^{4} - 273 x^{3} + 996 x^{2} - 192 x - 64 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_3^2:C_3$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ 8 a^{2} + 14 a + 10 + \left(a^{2} + 8 a + 3\right)\cdot 17 + \left(4 a^{2} + 16 a + 15\right)\cdot 17^{2} + \left(11 a^{2} + 6 a + 3\right)\cdot 17^{3} + \left(13 a^{2} + 9 a + 15\right)\cdot 17^{4} + \left(10 a^{2} + 5 a + 5\right)\cdot 17^{5} + \left(a^{2} + 13\right)\cdot 17^{6} + \left(11 a^{2} + 13 a + 9\right)\cdot 17^{7} + \left(5 a^{2} + 5 a + 14\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 9 + 17 + 17^{2} + 12\cdot 17^{3} + 5\cdot 17^{4} + 6\cdot 17^{5} + 4\cdot 17^{6} + 17^{7} + 3\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 3 }$ $=$ $ a^{2} + 3 a + 9 + \left(4 a^{2} + 7 a + 15\right)\cdot 17 + \left(16 a^{2} + 14 a + 8\right)\cdot 17^{2} + \left(9 a^{2} + 6 a + 9\right)\cdot 17^{3} + \left(9 a^{2} + 10 a + 7\right)\cdot 17^{4} + \left(a^{2} + 4 a + 6\right)\cdot 17^{5} + \left(3 a^{2} + 15 a + 3\right)\cdot 17^{6} + \left(15 a^{2} + 15\right)\cdot 17^{7} + \left(15 a^{2} + 15 a + 6\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 14 a^{2} + 14 a + 12 + \left(9 a + 7\right)\cdot 17 + \left(15 a^{2} + 11 a + 2\right)\cdot 17^{2} + \left(16 a^{2} + a + 14\right)\cdot 17^{3} + \left(10 a^{2} + 10 a + 2\right)\cdot 17^{4} + \left(9 a^{2} + a + 6\right)\cdot 17^{5} + \left(11 a^{2} + 8 a + 3\right)\cdot 17^{6} + \left(10 a^{2} + 7 a + 12\right)\cdot 17^{7} + \left(14 a^{2} + 2 a + 11\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 10 a^{2} + 12 a + \left(a^{2} + 6 a + 15\right)\cdot 17 + \left(10 a^{2} + 7 a + 7\right)\cdot 17^{2} + \left(2 a^{2} + 15 a + 9\right)\cdot 17^{3} + \left(7 a^{2} + 13 a + 16\right)\cdot 17^{4} + \left(12 a^{2} + 6\right)\cdot 17^{5} + \left(12 a^{2} + 3 a + 9\right)\cdot 17^{6} + \left(6 a^{2} + 15 a + 12\right)\cdot 17^{7} + \left(13 a^{2} + a + 2\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 16 a^{2} + 8 a + 4 + \left(13 a^{2} + a + 6\right)\cdot 17 + \left(2 a^{2} + 10 a + 14\right)\cdot 17^{2} + \left(3 a^{2} + 11 a + 9\right)\cdot 17^{3} + \left(13 a^{2} + 10 a + 3\right)\cdot 17^{4} + \left(10 a^{2} + 10 a\right)\cdot 17^{5} + \left(2 a^{2} + 13 a + 14\right)\cdot 17^{6} + \left(16 a^{2} + 5 a + 1\right)\cdot 17^{7} + \left(14 a^{2} + 9 a + 15\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 16 + 7\cdot 17 + 4\cdot 17^{2} + 12\cdot 17^{3} + 15\cdot 17^{4} + 12\cdot 17^{5} + 11\cdot 17^{6} + 14\cdot 17^{7} + 3\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 7 + 12\cdot 17 + 13\cdot 17^{2} + 11\cdot 17^{3} + 7\cdot 17^{4} + 2\cdot 17^{5} + 11\cdot 17^{6} + 12\cdot 17^{7} + 5\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 9 }$ $=$ $ 2 a^{2} + 4 + \left(12 a^{2} + 15\right)\cdot 17 + \left(2 a^{2} + 8 a + 16\right)\cdot 17^{2} + \left(7 a^{2} + 8 a + 1\right)\cdot 17^{3} + \left(13 a^{2} + 13 a + 10\right)\cdot 17^{4} + \left(5 a^{2} + 10 a + 3\right)\cdot 17^{5} + \left(2 a^{2} + 10 a + 14\right)\cdot 17^{6} + \left(8 a^{2} + 8 a + 4\right)\cdot 17^{7} + \left(3 a^{2} + 16 a + 4\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,6,5)(3,4,9)$
$(2,8,7)(3,9,4)$
$(1,3,2)(4,8,5)(6,9,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$1$ $3$ $(1,5,6)(2,8,7)(3,4,9)$ $3 \zeta_{3}$ $-3 \zeta_{3} - 3$
$1$ $3$ $(1,6,5)(2,7,8)(3,9,4)$ $-3 \zeta_{3} - 3$ $3 \zeta_{3}$
$3$ $3$ $(1,3,2)(4,8,5)(6,9,7)$ $0$ $0$
$3$ $3$ $(1,2,3)(4,5,8)(6,7,9)$ $0$ $0$
$3$ $3$ $(1,6,5)(3,4,9)$ $0$ $0$
$3$ $3$ $(1,5,6)(3,9,4)$ $0$ $0$
$3$ $3$ $(1,9,2)(3,8,5)(4,7,6)$ $0$ $0$
$3$ $3$ $(1,2,9)(3,5,8)(4,6,7)$ $0$ $0$
$3$ $3$ $(1,7,9)(2,3,5)(4,6,8)$ $0$ $0$
$3$ $3$ $(1,9,7)(2,5,3)(4,8,6)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.