Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 17.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{3} + 3 x + 51 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 32 + 15\cdot 53 + 38\cdot 53^{2} + 48\cdot 53^{3} + 23\cdot 53^{4} + 26\cdot 53^{5} + 46\cdot 53^{6} + 5\cdot 53^{7} + 6\cdot 53^{8} + 19\cdot 53^{9} + 10\cdot 53^{10} + 43\cdot 53^{11} + 8\cdot 53^{12} + 47\cdot 53^{13} + 26\cdot 53^{14} + 35\cdot 53^{15} + 50\cdot 53^{16} +O\left(53^{ 17 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 11 + 13\cdot 53 + 19\cdot 53^{2} + 6\cdot 53^{3} + 43\cdot 53^{4} + 5\cdot 53^{5} + 23\cdot 53^{6} + 46\cdot 53^{7} + 27\cdot 53^{8} + 49\cdot 53^{9} + 44\cdot 53^{10} + 12\cdot 53^{11} + 52\cdot 53^{12} + 26\cdot 53^{13} + 39\cdot 53^{14} + 38\cdot 53^{15} + 10\cdot 53^{16} +O\left(53^{ 17 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 32 a^{2} + 20 a + 4 + \left(37 a^{2} + 50 a + 34\right)\cdot 53 + \left(18 a^{2} + 31 a + 12\right)\cdot 53^{2} + \left(33 a^{2} + 9 a + 49\right)\cdot 53^{3} + \left(43 a^{2} + 8 a + 16\right)\cdot 53^{4} + \left(9 a^{2} + 4 a + 32\right)\cdot 53^{5} + \left(32 a^{2} + 21 a + 16\right)\cdot 53^{6} + \left(46 a^{2} + 39 a + 31\right)\cdot 53^{7} + \left(52 a^{2} + 49 a\right)\cdot 53^{8} + \left(33 a^{2} + 50 a + 11\right)\cdot 53^{9} + \left(23 a^{2} + 7 a + 10\right)\cdot 53^{10} + \left(25 a^{2} + 20 a + 9\right)\cdot 53^{11} + \left(10 a^{2} + 25 a + 22\right)\cdot 53^{12} + \left(50 a^{2} + 41 a + 15\right)\cdot 53^{13} + \left(42 a^{2} + 45 a + 26\right)\cdot 53^{14} + \left(6 a^{2} + 49 a + 44\right)\cdot 53^{15} + \left(10 a^{2} + 33 a + 38\right)\cdot 53^{16} +O\left(53^{ 17 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 14 + 9\cdot 53 + 23\cdot 53^{2} + 40\cdot 53^{3} + 22\cdot 53^{4} + 32\cdot 53^{5} + 29\cdot 53^{6} + 43\cdot 53^{7} + 17\cdot 53^{8} + 40\cdot 53^{9} + 24\cdot 53^{10} + 50\cdot 53^{11} + 51\cdot 53^{12} + 23\cdot 53^{13} + 17\cdot 53^{14} + 53^{15} + 42\cdot 53^{16} +O\left(53^{ 17 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 14 a^{2} + 19 a + 21 + \left(a^{2} + 8 a + 14\right)\cdot 53 + \left(22 a^{2} + 46 a + 19\right)\cdot 53^{2} + \left(20 a^{2} + 37 a + 23\right)\cdot 53^{3} + \left(4 a^{2} + 46 a + 44\right)\cdot 53^{4} + \left(46 a^{2} + 13 a + 51\right)\cdot 53^{5} + \left(33 a^{2} + 41 a + 19\right)\cdot 53^{6} + \left(11 a^{2} + 25 a + 14\right)\cdot 53^{7} + \left(2 a^{2} + 25 a + 5\right)\cdot 53^{8} + \left(24 a^{2} + 5 a + 44\right)\cdot 53^{9} + \left(32 a^{2} + 50 a + 27\right)\cdot 53^{10} + \left(28 a^{2} + 25 a + 15\right)\cdot 53^{11} + \left(42 a^{2} + 34 a + 33\right)\cdot 53^{12} + \left(44 a^{2} + 10 a + 4\right)\cdot 53^{13} + \left(43 a^{2} + 7 a + 28\right)\cdot 53^{14} + \left(22 a^{2} + 26 a + 23\right)\cdot 53^{15} + \left(23 a^{2} + 17 a + 12\right)\cdot 53^{16} +O\left(53^{ 17 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 52 a^{2} + 31 a + 39 + \left(33 a^{2} + 32 a + 25\right)\cdot 53 + \left(43 a^{2} + 13 a + 14\right)\cdot 53^{2} + \left(45 a^{2} + 2 a + 24\right)\cdot 53^{3} + \left(52 a^{2} + 44 a + 22\right)\cdot 53^{4} + \left(18 a^{2} + 7 a + 21\right)\cdot 53^{5} + \left(2 a^{2} + 36 a + 19\right)\cdot 53^{6} + \left(34 a^{2} + 25 a + 27\right)\cdot 53^{7} + \left(21 a^{2} + 2 a + 7\right)\cdot 53^{8} + \left(19 a^{2} + 52 a + 24\right)\cdot 53^{9} + \left(8 a^{2} + 24 a + 9\right)\cdot 53^{10} + \left(23 a + 24\right)\cdot 53^{11} + \left(45 a^{2} + 48 a + 33\right)\cdot 53^{12} + \left(8 a^{2} + 15 a + 34\right)\cdot 53^{13} + \left(49 a^{2} + 46 a + 41\right)\cdot 53^{14} + \left(39 a^{2} + 2 a + 23\right)\cdot 53^{15} + \left(6 a^{2} + 26 a + 13\right)\cdot 53^{16} +O\left(53^{ 17 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ a^{2} + 33 a + 43 + \left(16 a^{2} + 36 a + 42\right)\cdot 53 + \left(11 a^{2} + 38 a + 2\right)\cdot 53^{2} + \left(45 a^{2} + 25 a + 23\right)\cdot 53^{3} + \left(23 a^{2} + 34 a + 17\right)\cdot 53^{4} + \left(12 a^{2} + 29 a + 8\right)\cdot 53^{5} + \left(28 a^{2} + 14 a + 18\right)\cdot 53^{6} + \left(26 a^{2} + 19 a + 12\right)\cdot 53^{7} + \left(38 a^{2} + 49 a + 41\right)\cdot 53^{8} + \left(11 a^{2} + 40 a + 8\right)\cdot 53^{9} + \left(9 a^{2} + 14 a + 11\right)\cdot 53^{10} + \left(15 a^{2} + 10 a + 1\right)\cdot 53^{11} + \left(17 a^{2} + 40 a + 31\right)\cdot 53^{12} + \left(27 a^{2} + 3 a + 18\right)\cdot 53^{13} + \left(15 a^{2} + 19 a + 27\right)\cdot 53^{14} + \left(38 a^{2} + 34 a + 20\right)\cdot 53^{15} + \left(14 a^{2} + 33 a + 29\right)\cdot 53^{16} +O\left(53^{ 17 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 7 a^{2} + 14 a + 7 + \left(14 a^{2} + 47 a + 40\right)\cdot 53 + \left(12 a^{2} + 27 a + 52\right)\cdot 53^{2} + \left(52 a^{2} + 5 a + 33\right)\cdot 53^{3} + \left(4 a^{2} + 51 a + 45\right)\cdot 53^{4} + \left(50 a^{2} + 34 a + 6\right)\cdot 53^{5} + \left(39 a^{2} + 43 a + 32\right)\cdot 53^{6} + \left(47 a^{2} + 40 a + 33\right)\cdot 53^{7} + \left(50 a^{2} + 30 a + 49\right)\cdot 53^{8} + \left(47 a^{2} + 49 a + 38\right)\cdot 53^{9} + \left(49 a^{2} + 47 a + 9\right)\cdot 53^{10} + \left(51 a^{2} + 6 a + 9\right)\cdot 53^{11} + \left(52 a^{2} + 46 a + 1\right)\cdot 53^{12} + \left(10 a^{2} + 43\right)\cdot 53^{13} + \left(19 a^{2} + 31\right)\cdot 53^{14} + \left(23 a^{2} + 30 a + 24\right)\cdot 53^{15} + \left(19 a^{2} + a + 4\right)\cdot 53^{16} +O\left(53^{ 17 }\right)$ |
| $r_{ 9 }$ |
$=$ |
$ 42 a + 41 + \left(3 a^{2} + 36 a + 16\right)\cdot 53 + \left(51 a^{2} + 29\right)\cdot 53^{2} + \left(14 a^{2} + 25 a + 15\right)\cdot 53^{3} + \left(29 a^{2} + 27 a + 28\right)\cdot 53^{4} + \left(21 a^{2} + 15 a + 26\right)\cdot 53^{5} + \left(22 a^{2} + 2 a + 6\right)\cdot 53^{6} + \left(45 a^{2} + 8 a + 50\right)\cdot 53^{7} + \left(45 a^{2} + a + 2\right)\cdot 53^{8} + \left(21 a^{2} + 13 a + 29\right)\cdot 53^{9} + \left(35 a^{2} + 13 a + 10\right)\cdot 53^{10} + \left(37 a^{2} + 19 a + 46\right)\cdot 53^{11} + \left(43 a^{2} + 17 a + 30\right)\cdot 53^{12} + \left(16 a^{2} + 33 a + 50\right)\cdot 53^{13} + \left(41 a^{2} + 40 a + 25\right)\cdot 53^{14} + \left(27 a^{2} + 15 a + 52\right)\cdot 53^{15} + \left(31 a^{2} + 46 a + 9\right)\cdot 53^{16} +O\left(53^{ 17 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 9 }$
| Cycle notation |
| $(3,5,8)$ |
| $(1,2,4)$ |
| $(1,2,4)(3,7,8,6,5,9)$ |
| $(1,3,4,5,2,8)(6,9,7)$ |
| $(6,9,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 9 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$3$ |
$3$ |
| $9$ |
$2$ |
$(1,5)(2,3)(4,8)$ |
$1$ |
$1$ |
| $1$ |
$3$ |
$(1,4,2)(3,5,8)(6,7,9)$ |
$-3 \zeta_{3} - 3$ |
$3 \zeta_{3}$ |
| $1$ |
$3$ |
$(1,2,4)(3,8,5)(6,9,7)$ |
$3 \zeta_{3}$ |
$-3 \zeta_{3} - 3$ |
| $3$ |
$3$ |
$(1,2,4)$ |
$\zeta_{3} - 1$ |
$-\zeta_{3} - 2$ |
| $3$ |
$3$ |
$(1,4,2)$ |
$-\zeta_{3} - 2$ |
$\zeta_{3} - 1$ |
| $3$ |
$3$ |
$(1,4,2)(3,5,8)(6,9,7)$ |
$2 \zeta_{3} + 1$ |
$-2 \zeta_{3} - 1$ |
| $3$ |
$3$ |
$(1,2,4)(3,8,5)(6,7,9)$ |
$-2 \zeta_{3} - 1$ |
$2 \zeta_{3} + 1$ |
| $3$ |
$3$ |
$(1,4,2)(3,5,8)$ |
$\zeta_{3} + 2$ |
$-\zeta_{3} + 1$ |
| $3$ |
$3$ |
$(1,2,4)(3,8,5)$ |
$-\zeta_{3} + 1$ |
$\zeta_{3} + 2$ |
| $6$ |
$3$ |
$(1,2,4)(3,5,8)$ |
$0$ |
$0$ |
| $18$ |
$3$ |
$(1,9,3)(2,7,8)(4,6,5)$ |
$0$ |
$0$ |
| $9$ |
$6$ |
$(1,3,4,5,2,8)(6,9,7)$ |
$\zeta_{3}$ |
$-\zeta_{3} - 1$ |
| $9$ |
$6$ |
$(1,8,2,5,4,3)(6,7,9)$ |
$-\zeta_{3} - 1$ |
$\zeta_{3}$ |
| $9$ |
$6$ |
$(1,5,4,8,2,3)(6,7,9)$ |
$1$ |
$1$ |
| $9$ |
$6$ |
$(1,3,2,8,4,5)(6,9,7)$ |
$1$ |
$1$ |
| $9$ |
$6$ |
$(1,8)(2,5)(3,4)(6,7,9)$ |
$\zeta_{3}$ |
$-\zeta_{3} - 1$ |
| $9$ |
$6$ |
$(1,8)(2,5)(3,4)(6,9,7)$ |
$-\zeta_{3} - 1$ |
$\zeta_{3}$ |
| $9$ |
$6$ |
$(3,7,8,6,5,9)$ |
$\zeta_{3}$ |
$-\zeta_{3} - 1$ |
| $9$ |
$6$ |
$(3,9,5,6,8,7)$ |
$-\zeta_{3} - 1$ |
$\zeta_{3}$ |
| $18$ |
$9$ |
$(1,7,5,4,9,8,2,6,3)$ |
$0$ |
$0$ |
| $18$ |
$9$ |
$(1,5,9,2,3,7,4,8,6)$ |
$0$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.