Properties

Label 3.3e6_19e3.9t6.2c1
Dimension 3
Group $C_9:C_3$
Conductor $ 3^{6} \cdot 19^{3}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_9:C_3$
Conductor:$5000211= 3^{6} \cdot 19^{3} $
Artin number field: Splitting field of $f= x^{9} - 57 x^{7} - 76 x^{6} + 855 x^{5} + 1482 x^{4} - 4218 x^{3} - 7866 x^{2} + 3591 x + 6289 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_9:C_3$
Parity: Even
Determinant: 1.19.3t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{3} + x + 28 $
Roots:
$r_{ 1 }$ $=$ $ 12 a^{2} + 24 a + 8 + \left(a^{2} + 15 a + 11\right)\cdot 31 + \left(21 a^{2} + 20 a + 24\right)\cdot 31^{2} + \left(3 a^{2} + 14 a + 12\right)\cdot 31^{3} + \left(16 a^{2} + 11 a\right)\cdot 31^{4} + \left(14 a^{2} + 12 a + 20\right)\cdot 31^{5} + \left(17 a^{2} + 20 a + 11\right)\cdot 31^{6} + \left(20 a^{2} + 4 a + 3\right)\cdot 31^{7} + \left(27 a^{2} + 11 a + 8\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 22 a^{2} + 24 a + 25 + \left(23 a^{2} + 27 a + 15\right)\cdot 31 + \left(25 a^{2} + 2 a + 27\right)\cdot 31^{2} + \left(3 a^{2} + 16 a + 12\right)\cdot 31^{3} + \left(10 a^{2} + 27\right)\cdot 31^{4} + \left(3 a^{2} + 13 a + 22\right)\cdot 31^{5} + \left(24 a^{2} + 15 a + 5\right)\cdot 31^{6} + \left(23 a^{2} + 17 a + 26\right)\cdot 31^{7} + \left(29 a^{2} + 12 a + 19\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 27 + 17\cdot 31 + 19\cdot 31^{2} + 18\cdot 31^{3} + 3\cdot 31^{4} + 22\cdot 31^{5} + 2\cdot 31^{6} + 7\cdot 31^{7} + 17\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 28 a^{2} + 14 a + 29 + \left(5 a^{2} + 18 a + 3\right)\cdot 31 + \left(15 a^{2} + 7 a + 10\right)\cdot 31^{2} + \left(23 a^{2} + 5\right)\cdot 31^{3} + \left(4 a^{2} + 19 a + 3\right)\cdot 31^{4} + \left(13 a^{2} + 5 a + 19\right)\cdot 31^{5} + \left(20 a^{2} + 26 a + 13\right)\cdot 31^{6} + \left(17 a^{2} + 8 a + 1\right)\cdot 31^{7} + \left(4 a^{2} + 7 a + 3\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 29 + 19\cdot 31 + 15\cdot 31^{2} + 25\cdot 31^{3} + 23\cdot 31^{4} + 4\cdot 31^{5} + 7\cdot 31^{6} + 5\cdot 31^{7} + 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 12 a^{2} + 7 a + 8 + \left(16 a^{2} + 5 a + 21\right)\cdot 31 + \left(30 a^{2} + 7 a + 30\right)\cdot 31^{2} + \left(11 a^{2} + 9 a + 7\right)\cdot 31^{3} + \left(8 a^{2} + 5 a + 26\right)\cdot 31^{4} + \left(25 a^{2} + 24 a + 16\right)\cdot 31^{5} + \left(3 a^{2} + 27 a + 2\right)\cdot 31^{6} + \left(8 a^{2} + 26\right)\cdot 31^{7} + \left(8 a^{2} + 30 a + 15\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 11 a^{2} + 14 a + 28 + \left(12 a^{2} + 20 a + 28\right)\cdot 31 + \left(24 a^{2} + 11 a + 5\right)\cdot 31^{2} + \left(21 a^{2} + 11 a + 4\right)\cdot 31^{3} + \left(17 a^{2} + a + 22\right)\cdot 31^{4} + \left(10 a^{2} + 15 a + 27\right)\cdot 31^{5} + \left(17 a^{2} + 13 a + 21\right)\cdot 31^{6} + \left(24 a^{2} + 8 a + 26\right)\cdot 31^{7} + \left(26 a^{2} + 30 a + 17\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 8 a^{2} + 10 a + 26 + \left(2 a^{2} + 5 a + 11\right)\cdot 31 + \left(7 a^{2} + 12 a + 25\right)\cdot 31^{2} + \left(28 a^{2} + 10 a + 18\right)\cdot 31^{3} + \left(4 a^{2} + 24 a + 13\right)\cdot 31^{4} + \left(26 a^{2} + 22 a + 17\right)\cdot 31^{5} + \left(9 a^{2} + 20 a + 6\right)\cdot 31^{6} + \left(29 a^{2} + 21 a + 9\right)\cdot 31^{7} + \left(26 a^{2} + a + 28\right)\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 9 }$ $=$ $ 6 + 24\cdot 31 + 26\cdot 31^{2} + 17\cdot 31^{3} + 3\cdot 31^{4} + 4\cdot 31^{5} + 21\cdot 31^{6} + 18\cdot 31^{7} + 12\cdot 31^{8} +O\left(31^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3,6,4,5,7,2,9,8)$
$(3,9,5)(6,7,8)$
$(1,4,2)(6,8,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$1$$3$$(1,4,2)(3,5,9)(6,7,8)$$3 \zeta_{3}$
$1$$3$$(1,2,4)(3,9,5)(6,8,7)$$-3 \zeta_{3} - 3$
$3$$3$$(1,4,2)(6,8,7)$$0$
$3$$3$$(1,2,4)(6,7,8)$$0$
$3$$9$$(1,3,6,4,5,7,2,9,8)$$0$
$3$$9$$(1,6,5,2,8,3,4,7,9)$$0$
$3$$9$$(1,9,6,4,3,7,2,5,8)$$0$
$3$$9$$(1,6,3,2,8,9,4,7,5)$$0$
$3$$9$$(1,5,6,4,9,7,2,3,8)$$0$
$3$$9$$(1,6,9,2,8,5,4,7,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.