Properties

Label 3.3e6_19e2.9t7.4c2
Dimension 3
Group $C_3^2:C_3$
Conductor $ 3^{6} \cdot 19^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_3^2:C_3$
Conductor:$263169= 3^{6} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} - 33 x^{7} + 114 x^{6} + 291 x^{5} - 1326 x^{4} + 9 x^{3} + 4290 x^{2} - 4812 x + 1405 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_3^2:C_3$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{3} + 2 x + 27 $
Roots:
$r_{ 1 }$ $=$ $ 3 a^{2} + 3 a + 12 + \left(13 a^{2} + 26 a + 20\right)\cdot 29 + \left(2 a^{2} + 9 a + 21\right)\cdot 29^{2} + \left(17 a^{2} + 24 a + 12\right)\cdot 29^{3} + \left(22 a^{2} + 8 a + 26\right)\cdot 29^{4} + \left(13 a^{2} + a + 2\right)\cdot 29^{5} + \left(20 a^{2} + 22 a + 13\right)\cdot 29^{6} + \left(22 a^{2} + 6 a + 3\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 2 }$ $=$ $ a^{2} + 25 a + 12 + \left(21 a^{2} + 16 a + 27\right)\cdot 29 + \left(21 a^{2} + 27 a + 5\right)\cdot 29^{2} + \left(15 a^{2} + 22 a + 1\right)\cdot 29^{3} + \left(9 a^{2} + 27 a + 1\right)\cdot 29^{4} + \left(11 a^{2} + 10 a + 3\right)\cdot 29^{5} + \left(9 a^{2} + 19 a + 1\right)\cdot 29^{6} + \left(10 a^{2} + 20 a + 21\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 9 + 11\cdot 29 + 15\cdot 29^{2} + 5\cdot 29^{3} + 29^{4} + 8\cdot 29^{5} + 21\cdot 29^{6} + 10\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 18 + 16\cdot 29 + 27\cdot 29^{2} + 14\cdot 29^{3} + 5\cdot 29^{4} + 24\cdot 29^{5} + 18\cdot 29^{6} + 22\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 7 + 23\cdot 29 + 28\cdot 29^{2} + 10\cdot 29^{3} + 10\cdot 29^{4} + 21\cdot 29^{5} + 7\cdot 29^{6} + 25\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 11 a^{2} + 7 a + 6 + \left(17 a^{2} + 15 a + 3\right)\cdot 29 + \left(11 a + 26\right)\cdot 29^{2} + \left(8 a^{2} + 19\right)\cdot 29^{3} + \left(27 a^{2} + 11 a + 24\right)\cdot 29^{4} + \left(19 a^{2} + 4 a + 4\right)\cdot 29^{5} + \left(4 a^{2} + 14 a + 14\right)\cdot 29^{6} + \left(24 a^{2} + 15 a + 10\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 28 a^{2} + 6 a + 26 + \left(28 a^{2} + 2\right)\cdot 29 + \left(23 a^{2} + 12 a + 2\right)\cdot 29^{2} + \left(8 a^{2} + 20 a + 21\right)\cdot 29^{3} + \left(5 a^{2} + 14 a + 22\right)\cdot 29^{4} + \left(9 a^{2} + 25\right)\cdot 29^{5} + \left(5 a^{2} + 11 a + 21\right)\cdot 29^{6} + \left(15 a^{2} + 9 a + 12\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 27 a^{2} + 20 a + 15 + \left(15 a^{2} + 2 a + 14\right)\cdot 29 + \left(2 a^{2} + 7 a + 2\right)\cdot 29^{2} + \left(3 a^{2} + 13 a + 23\right)\cdot 29^{3} + \left(a^{2} + 5 a + 26\right)\cdot 29^{4} + \left(6 a^{2} + 27 a + 11\right)\cdot 29^{5} + \left(3 a^{2} + 24 a + 9\right)\cdot 29^{6} + \left(20 a^{2} + 12 a + 19\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 9 }$ $=$ $ 17 a^{2} + 26 a + 14 + \left(19 a^{2} + 25 a + 25\right)\cdot 29 + \left(6 a^{2} + 18 a + 14\right)\cdot 29^{2} + \left(5 a^{2} + 5 a + 6\right)\cdot 29^{3} + \left(21 a^{2} + 19 a + 26\right)\cdot 29^{4} + \left(26 a^{2} + 13 a + 13\right)\cdot 29^{5} + \left(14 a^{2} + 24 a + 8\right)\cdot 29^{6} + \left(23 a^{2} + 21 a + 19\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3,2)(4,9,7)(5,6,8)$
$(1,7,8)(2,6,9)$
$(2,9,6)(3,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$1$$3$$(1,8,7)(2,6,9)(3,5,4)$$-3 \zeta_{3} - 3$
$1$$3$$(1,7,8)(2,9,6)(3,4,5)$$3 \zeta_{3}$
$3$$3$$(1,3,2)(4,9,7)(5,6,8)$$0$
$3$$3$$(1,2,3)(4,7,9)(5,8,6)$$0$
$3$$3$$(1,7,8)(2,6,9)$$0$
$3$$3$$(1,8,7)(2,9,6)$$0$
$3$$3$$(1,5,2)(3,9,7)(4,6,8)$$0$
$3$$3$$(1,2,5)(3,7,9)(4,8,6)$$0$
$3$$3$$(1,4,2)(3,6,8)(5,9,7)$$0$
$3$$3$$(1,2,4)(3,8,6)(5,7,9)$$0$
The blue line marks the conjugacy class containing complex conjugation.