Properties

Label 3.3e6_19e2.9t7.3c1
Dimension 3
Group $C_3^2:C_3$
Conductor $ 3^{6} \cdot 19^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_3^2:C_3$
Conductor:$263169= 3^{6} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} - 33 x^{7} + 96 x^{6} + 327 x^{5} - 912 x^{4} - 1116 x^{3} + 2904 x^{2} + 768 x - 1664 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_3^2:C_3$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ 11\cdot 13 + 3\cdot 13^{2} + 3\cdot 13^{3} + 5\cdot 13^{4} + 4\cdot 13^{5} + 13^{6} + 6\cdot 13^{7} + 10\cdot 13^{8} + 12\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 2 a^{2} + 6 a + 1 + \left(8 a^{2} + 10\right)\cdot 13 + \left(5 a^{2} + 6 a + 6\right)\cdot 13^{2} + \left(2 a^{2} + 12 a + 8\right)\cdot 13^{3} + \left(a^{2} + 10 a + 6\right)\cdot 13^{4} + \left(6 a^{2} + 6 a + 3\right)\cdot 13^{5} + \left(12 a^{2} + 11 a + 7\right)\cdot 13^{6} + \left(3 a^{2} + 12\right)\cdot 13^{7} + \left(a^{2} + 8 a + 2\right)\cdot 13^{8} + \left(12 a^{2} + 2 a + 3\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 6 a^{2} + 5 a + 10 + \left(4 a^{2} + 7 a\right)\cdot 13 + \left(2 a^{2} + a + 10\right)\cdot 13^{2} + \left(4 a^{2} + 9 a + 4\right)\cdot 13^{3} + \left(6 a^{2} + 8 a + 4\right)\cdot 13^{4} + \left(10 a^{2} + 12 a + 2\right)\cdot 13^{5} + \left(10 a + 6\right)\cdot 13^{6} + \left(11 a + 9\right)\cdot 13^{7} + \left(4 a^{2} + 10 a + 12\right)\cdot 13^{8} + \left(9 a^{2} + 5 a + 8\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 4 }$ $=$ $ a^{2} + a + 4 + \left(2 a^{2} + 8 a + 6\right)\cdot 13 + \left(4 a^{2} + 5 a\right)\cdot 13^{2} + \left(10 a^{2} + 2 a + 6\right)\cdot 13^{3} + \left(5 a^{2} + 11 a + 8\right)\cdot 13^{4} + \left(6 a^{2} + 9 a + 12\right)\cdot 13^{5} + \left(11 a + 12\right)\cdot 13^{6} + \left(5 a^{2} + 7 a\right)\cdot 13^{7} + \left(2 a^{2} + 10 a\right)\cdot 13^{8} + \left(7 a^{2} + 5 a + 1\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 4 a^{2} + 5 a + 3 + \left(7 a^{2} + 10 a\right)\cdot 13 + \left(12 a^{2} + 5 a + 2\right)\cdot 13^{2} + \left(5 a^{2} + 7 a + 7\right)\cdot 13^{3} + \left(11 a^{2} + 3 a + 2\right)\cdot 13^{4} + 11\cdot 13^{5} + \left(5 a^{2} + 5 a + 11\right)\cdot 13^{6} + \left(12 a^{2} + a + 12\right)\cdot 13^{7} + \left(7 a^{2} + 8 a + 4\right)\cdot 13^{8} + \left(10 a^{2} + a + 6\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 3 a^{2} + 3 a + 6 + \left(a^{2} + 8 a + 9\right)\cdot 13 + \left(11 a^{2} + 5 a + 8\right)\cdot 13^{2} + \left(2 a^{2} + 9 a + 11\right)\cdot 13^{3} + \left(8 a^{2} + 6\right)\cdot 13^{4} + \left(a^{2} + 3\right)\cdot 13^{5} + \left(7 a^{2} + 10 a + 10\right)\cdot 13^{6} + \left(12 a + 5\right)\cdot 13^{7} + \left(a^{2} + 6 a + 4\right)\cdot 13^{8} + \left(6 a^{2} + 5 a\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 6 + 13 + 12\cdot 13^{2} + 5\cdot 13^{3} + 12\cdot 13^{4} + 12\cdot 13^{5} + 4\cdot 13^{6} + 5\cdot 13^{7} + 12\cdot 13^{8} + 10\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 10 a^{2} + 6 a + 3 + \left(2 a^{2} + 4 a + 7\right)\cdot 13 + \left(3 a^{2} + a + 3\right)\cdot 13^{2} + \left(11 a + 1\right)\cdot 13^{3} + \left(6 a^{2} + 3 a\right)\cdot 13^{4} + \left(9 a + 9\right)\cdot 13^{5} + \left(2 a + 3\right)\cdot 13^{6} + \left(4 a^{2} + 4 a + 8\right)\cdot 13^{7} + \left(9 a^{2} + 7 a\right)\cdot 13^{8} + \left(6 a^{2} + 4 a + 9\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 9 }$ $=$ $ 9 + 5\cdot 13 + 4\cdot 13^{2} + 3\cdot 13^{3} + 5\cdot 13^{4} + 5\cdot 13^{5} + 6\cdot 13^{6} + 3\cdot 13^{7} + 3\cdot 13^{8} + 12\cdot 13^{9} +O\left(13^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,9,7)(2,4,8)$
$(2,4,8)(3,6,5)$
$(1,2,3)(4,5,7)(6,9,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$1$$3$$(1,9,7)(2,8,4)(3,6,5)$$3 \zeta_{3}$
$1$$3$$(1,7,9)(2,4,8)(3,5,6)$$-3 \zeta_{3} - 3$
$3$$3$$(1,2,3)(4,5,7)(6,9,8)$$0$
$3$$3$$(1,3,2)(4,7,5)(6,8,9)$$0$
$3$$3$$(1,9,7)(2,4,8)$$0$
$3$$3$$(1,7,9)(2,8,4)$$0$
$3$$3$$(1,4,5)(2,3,9)(6,7,8)$$0$
$3$$3$$(1,5,4)(2,9,3)(6,8,7)$$0$
$3$$3$$(1,8,6)(2,3,7)(4,5,9)$$0$
$3$$3$$(1,6,8)(2,7,3)(4,9,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.