Properties

Label 3.3e6_19e2.9t7.2c1
Dimension 3
Group $C_3^2:C_3$
Conductor $ 3^{6} \cdot 19^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_3^2:C_3$
Conductor:$263169= 3^{6} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{9} - 24 x^{7} - 23 x^{6} + 135 x^{5} + 159 x^{4} - 209 x^{3} - 180 x^{2} + 141 x + 11 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_3^2:C_3$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ 6\cdot 11 + 5\cdot 11^{2} + 6\cdot 11^{3} + 11^{4} + 3\cdot 11^{5} + 8\cdot 11^{6} + 9\cdot 11^{7} + 9\cdot 11^{8} + 4\cdot 11^{9} +O\left(11^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 1 + 7\cdot 11 + 5\cdot 11^{2} + 9\cdot 11^{3} + 2\cdot 11^{4} + 6\cdot 11^{5} + 8\cdot 11^{6} + 8\cdot 11^{7} + 11^{8} + 11^{9} +O\left(11^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 4 a^{2} + 5 a + 9 + \left(7 a^{2} + 6 a + 9\right)\cdot 11 + 9 a\cdot 11^{2} + \left(2 a^{2} + 2 a + 10\right)\cdot 11^{3} + \left(a^{2} + 8\right)\cdot 11^{4} + \left(8 a^{2} + 10 a + 10\right)\cdot 11^{5} + \left(8 a^{2} + 7 a + 7\right)\cdot 11^{6} + \left(5 a^{2} + 5 a + 7\right)\cdot 11^{7} + \left(2 a^{2} + 6 a + 10\right)\cdot 11^{8} + \left(3 a^{2} + 3 a + 7\right)\cdot 11^{9} +O\left(11^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 10 a^{2} + 2 a + 6 + \left(2 a + 8\right)\cdot 11 + \left(10 a^{2} + 7 a + 9\right)\cdot 11^{2} + \left(8 a^{2} + 9 a\right)\cdot 11^{3} + \left(9 a + 1\right)\cdot 11^{4} + 2 a\cdot 11^{5} + 3 a\cdot 11^{6} + \left(3 a^{2} + a + 4\right)\cdot 11^{7} + \left(a^{2} + 7 a + 5\right)\cdot 11^{8} + \left(2 a^{2} + 6 a + 6\right)\cdot 11^{9} +O\left(11^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 8 a^{2} + 4 a + 7 + \left(2 a^{2} + 2 a + 3\right)\cdot 11 + 5 a\cdot 11^{2} + 9 a\cdot 11^{3} + \left(9 a^{2} + 1\right)\cdot 11^{4} + \left(2 a^{2} + 9 a\right)\cdot 11^{5} + \left(2 a^{2} + 10 a + 3\right)\cdot 11^{6} + \left(2 a^{2} + 3 a + 10\right)\cdot 11^{7} + \left(7 a^{2} + 8 a + 5\right)\cdot 11^{8} + \left(5 a^{2} + 7\right)\cdot 11^{9} +O\left(11^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 10 + 8\cdot 11 + 10\cdot 11^{2} + 5\cdot 11^{3} + 6\cdot 11^{4} + 11^{5} + 5\cdot 11^{6} + 3\cdot 11^{7} + 10\cdot 11^{8} + 4\cdot 11^{9} +O\left(11^{ 10 }\right)$
$r_{ 7 }$ $=$ $ a^{2} + 3 a + 5 + \left(4 a + 7\right)\cdot 11 + 6 a^{2}11^{2} + \left(4 a^{2} + 5 a + 6\right)\cdot 11^{3} + \left(6 a^{2} + 5 a + 8\right)\cdot 11^{4} + \left(3 a^{2} + 5 a + 4\right)\cdot 11^{5} + \left(9 a^{2} + 7 a + 1\right)\cdot 11^{6} + \left(9 a^{2} + 10 a + 2\right)\cdot 11^{7} + \left(6 a^{2} + 8 a + 9\right)\cdot 11^{8} + \left(7 a^{2} + 7 a + 2\right)\cdot 11^{9} +O\left(11^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 9 a^{2} + 8 a + 1 + \left(9 a^{2} + 4 a + 2\right)\cdot 11 + \left(3 a^{2} + 2 a + 5\right)\cdot 11^{2} + \left(9 a^{2} + 3 a + 1\right)\cdot 11^{3} + \left(3 a + 1\right)\cdot 11^{4} + 8 a\cdot 11^{5} + \left(4 a^{2} + 2 a + 9\right)\cdot 11^{6} + \left(10 a^{2} + 10 a + 2\right)\cdot 11^{7} + \left(8 a^{2} + 6 a + 8\right)\cdot 11^{8} + \left(a^{2} + 3 a + 9\right)\cdot 11^{9} +O\left(11^{ 10 }\right)$
$r_{ 9 }$ $=$ $ a^{2} + 5 + \left(a^{2} + 2 a + 1\right)\cdot 11 + \left(a^{2} + 8 a + 5\right)\cdot 11^{2} + \left(8 a^{2} + 2 a + 3\right)\cdot 11^{3} + \left(3 a^{2} + 2 a + 1\right)\cdot 11^{4} + \left(7 a^{2} + 8 a + 6\right)\cdot 11^{5} + 8 a^{2}11^{6} + \left(a^{2} + a + 6\right)\cdot 11^{7} + \left(6 a^{2} + 6 a + 4\right)\cdot 11^{8} + \left(a^{2} + 10 a + 9\right)\cdot 11^{9} +O\left(11^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,2,6)(7,8,9)$
$(1,3,7)(2,4,9)(5,8,6)$
$(3,4,5)(7,8,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$1$$3$$(1,2,6)(3,4,5)(7,9,8)$$3 \zeta_{3}$
$1$$3$$(1,6,2)(3,5,4)(7,8,9)$$-3 \zeta_{3} - 3$
$3$$3$$(1,3,7)(2,4,9)(5,8,6)$$0$
$3$$3$$(1,7,3)(2,9,4)(5,6,8)$$0$
$3$$3$$(1,2,6)(7,8,9)$$0$
$3$$3$$(1,6,2)(7,9,8)$$0$
$3$$3$$(1,4,7)(2,5,9)(3,8,6)$$0$
$3$$3$$(1,7,4)(2,9,5)(3,6,8)$$0$
$3$$3$$(1,5,7)(2,3,9)(4,8,6)$$0$
$3$$3$$(1,7,5)(2,9,3)(4,6,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.