Properties

Label 3.3e6_19e2.12t33.2
Dimension 3
Group $\PSL(2,5)$
Conductor $ 3^{6} \cdot 19^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$\PSL(2,5)$
Conductor:$263169= 3^{6} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 3 x^{4} + 2 x^{3} - 9 x^{2} + 9 x - 6 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 13 + \left(18 a + 7\right)\cdot 43 + \left(7 a + 32\right)\cdot 43^{2} + \left(13 a + 8\right)\cdot 43^{3} + \left(9 a + 40\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 32 + 39\cdot 43 + 22\cdot 43^{2} + 3\cdot 43^{3} + 29\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 4 + 24\cdot 43 + 23\cdot 43^{2} + 41\cdot 43^{3} + 41\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 36 a + 20 + \left(24 a + 18\right)\cdot 43 + \left(35 a + 21\right)\cdot 43^{2} + \left(29 a + 14\right)\cdot 43^{3} + \left(33 a + 36\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 23 a + 20 + 18 a\cdot 43 + \left(18 a + 36\right)\cdot 43^{2} + \left(5 a + 36\right)\cdot 43^{3} + \left(36 a + 39\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 20 a + \left(24 a + 39\right)\cdot 43 + \left(24 a + 35\right)\cdot 43^{2} + \left(37 a + 23\right)\cdot 43^{3} + \left(6 a + 27\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)(3,4)$
$(1,3,6)(2,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$15$ $2$ $(1,5)(3,6)$ $-1$ $-1$
$20$ $3$ $(1,3,6)(2,5,4)$ $0$ $0$
$12$ $5$ $(1,4,2,5,3)$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$12$ $5$ $(1,2,3,4,5)$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.