Properties

Label 3.3e6_11e2.12t33.4
Dimension 3
Group $\PSL(2,5)$
Conductor $ 3^{6} \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$\PSL(2,5)$
Conductor:$88209= 3^{6} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{4} - 24 x^{3} + 84 x^{2} - 90 x + 29 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 6 + \left(3 a + 7\right)\cdot 17 + \left(12 a + 10\right)\cdot 17^{2} + \left(8 a + 4\right)\cdot 17^{3} + \left(11 a + 7\right)\cdot 17^{4} + \left(11 a + 4\right)\cdot 17^{5} + \left(2 a + 4\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 13 + \left(8 a + 9\right)\cdot 17 + \left(8 a + 16\right)\cdot 17^{2} + 9 a\cdot 17^{3} + \left(12 a + 10\right)\cdot 17^{4} + \left(9 a + 1\right)\cdot 17^{5} +O\left(17^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 13 + \left(13 a + 3\right)\cdot 17 + \left(4 a + 2\right)\cdot 17^{2} + \left(8 a + 1\right)\cdot 17^{3} + \left(5 a + 10\right)\cdot 17^{4} + \left(5 a + 4\right)\cdot 17^{5} + \left(14 a + 12\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 4 + 16\cdot 17 + 2\cdot 17^{2} + 13\cdot 17^{3} + 12\cdot 17^{4} + 5\cdot 17^{5} + 8\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 3 + \left(8 a + 11\right)\cdot 17 + \left(8 a + 16\right)\cdot 17^{2} + \left(7 a + 1\right)\cdot 17^{3} + \left(4 a + 13\right)\cdot 17^{4} + \left(7 a + 15\right)\cdot 17^{5} + \left(16 a + 7\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 12 + 2\cdot 17 + 2\cdot 17^{2} + 12\cdot 17^{3} + 14\cdot 17^{4} + 17^{5} + 17^{6} +O\left(17^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(3,6)$
$(1,4,2)(3,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$15$ $2$ $(3,4)(5,6)$ $-1$ $-1$
$20$ $3$ $(1,4,2)(3,6,5)$ $0$ $0$
$12$ $5$ $(1,2,4,5,3)$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$12$ $5$ $(1,4,3,2,5)$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.