Properties

Label 3.3e5_19.6t6.1c1
Dimension 3
Group $A_4\times C_2$
Conductor $ 3^{5} \cdot 19 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$4617= 3^{5} \cdot 19 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 3 x^{4} + 3 x^{3} - 9 x^{2} + 9 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Even
Determinant: 1.3_19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 43 a + 49 + \left(48 a + 39\right)\cdot 53 + \left(8 a + 52\right)\cdot 53^{2} + \left(11 a + 3\right)\cdot 53^{3} + \left(38 a + 49\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 47 + \left(49 a + 2\right)\cdot 53 + \left(46 a + 4\right)\cdot 53^{2} + \left(49 a + 3\right)\cdot 53^{3} + \left(2 a + 34\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 41 a + 42 + \left(3 a + 28\right)\cdot 53 + \left(6 a + 36\right)\cdot 53^{2} + \left(3 a + 49\right)\cdot 53^{3} + \left(50 a + 48\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 43 + 4\cdot 53 + 45\cdot 53^{2} + 10\cdot 53^{3} + 9\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 25 + 49\cdot 53 + 33\cdot 53^{2} + 51\cdot 53^{3} + 38\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 9 + \left(4 a + 33\right)\cdot 53 + \left(44 a + 39\right)\cdot 53^{2} + \left(41 a + 39\right)\cdot 53^{3} + \left(14 a + 31\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)$
$(1,2,4)(3,5,6)$
$(4,5)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,6)(2,3)(4,5)$$-3$
$3$$2$$(1,6)$$1$
$3$$2$$(1,6)(2,3)$$-1$
$4$$3$$(1,2,4)(3,5,6)$$0$
$4$$3$$(1,4,2)(3,6,5)$$0$
$4$$6$$(1,3,5,6,2,4)$$0$
$4$$6$$(1,4,2,6,5,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.