Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 211 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 6 + 148\cdot 211 + 190\cdot 211^{2} + 2\cdot 211^{3} + 139\cdot 211^{4} +O\left(211^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 107 + 131\cdot 211 + 30\cdot 211^{2} + 2\cdot 211^{3} + 32\cdot 211^{4} +O\left(211^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 140 + 126\cdot 211 + 23\cdot 211^{2} + 119\cdot 211^{3} + 198\cdot 211^{4} +O\left(211^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 170 + 15\cdot 211 + 177\cdot 211^{2} + 86\cdot 211^{3} + 52\cdot 211^{4} +O\left(211^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3)$ |
| $(1,2)(3,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $3$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $4$ | $3$ | $(1,2,3)$ | $0$ |
| $4$ | $3$ | $(1,3,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.