Properties

Label 3.3e4_73e2.9t7.4c1
Dimension 3
Group $C_3^2:C_3$
Conductor $ 3^{4} \cdot 73^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_3^2:C_3$
Conductor:$431649= 3^{4} \cdot 73^{2} $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} - 54 x^{7} + 137 x^{6} + 759 x^{5} - 1971 x^{4} - 2178 x^{3} + 5625 x^{2} + 1608 x - 3284 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_3^2:C_3$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{3} + 2 x + 18 $
Roots:
$r_{ 1 }$ $=$ $ 4 a^{2} + 19 a + 21 + \left(10 a^{2} + 20 a + 5\right)\cdot 23 + \left(12 a^{2} + 11 a + 1\right)\cdot 23^{2} + \left(6 a^{2} + 21 a + 1\right)\cdot 23^{3} + \left(22 a^{2} + 15 a + 22\right)\cdot 23^{4} + \left(9 a^{2} + 6 a + 20\right)\cdot 23^{5} + \left(21 a^{2} + 11 a + 20\right)\cdot 23^{6} + \left(12 a^{2} + 8 a + 1\right)\cdot 23^{7} + \left(17 a^{2} + 14 a + 8\right)\cdot 23^{8} + \left(22 a^{2} + 8 a + 7\right)\cdot 23^{9} +O\left(23^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 15 a^{2} + 6 a + 5 + \left(2 a^{2} + 8 a + 11\right)\cdot 23 + \left(18 a^{2} + 3 a + 16\right)\cdot 23^{2} + \left(a^{2} + 7 a + 17\right)\cdot 23^{3} + \left(12 a + 7\right)\cdot 23^{4} + \left(13 a^{2} + 15 a + 17\right)\cdot 23^{5} + \left(17 a^{2} + 21 a + 15\right)\cdot 23^{6} + \left(15 a^{2} + 8 a + 5\right)\cdot 23^{7} + \left(21 a^{2} + 13 a + 21\right)\cdot 23^{8} + \left(19 a^{2} + 22 a + 18\right)\cdot 23^{9} +O\left(23^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 19 a^{2} + 12 a + 18 + \left(19 a^{2} + 3 a + 18\right)\cdot 23 + \left(5 a^{2} + 17 a + 7\right)\cdot 23^{2} + 20 a\cdot 23^{3} + \left(11 a^{2} + 6 a + 7\right)\cdot 23^{4} + \left(2 a^{2} + 12 a + 3\right)\cdot 23^{5} + \left(9 a^{2} + 15 a + 12\right)\cdot 23^{6} + \left(16 a^{2} + 16 a + 6\right)\cdot 23^{7} + \left(13 a^{2} + 19 a + 18\right)\cdot 23^{8} + \left(7 a^{2} + 10 a + 17\right)\cdot 23^{9} +O\left(23^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 22 + 17\cdot 23 + 12\cdot 23^{2} + 12\cdot 23^{3} + 12\cdot 23^{4} + 7\cdot 23^{5} + 7\cdot 23^{6} + 8\cdot 23^{7} + 23^{8} + 20\cdot 23^{9} +O\left(23^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 15 a + 8 + \left(16 a^{2} + 21 a + 21\right)\cdot 23 + \left(4 a^{2} + 16 a + 13\right)\cdot 23^{2} + \left(16 a^{2} + 3 a + 21\right)\cdot 23^{3} + \left(12 a^{2} + 16\right)\cdot 23^{4} + \left(10 a^{2} + 4 a + 21\right)\cdot 23^{5} + \left(15 a^{2} + 19 a + 12\right)\cdot 23^{6} + \left(16 a^{2} + 20 a + 14\right)\cdot 23^{7} + \left(14 a^{2} + 11 a + 19\right)\cdot 23^{8} + \left(15 a^{2} + 3 a + 20\right)\cdot 23^{9} +O\left(23^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 19 + 7\cdot 23 + 5\cdot 23^{2} + 2\cdot 23^{3} + 6\cdot 23^{4} + 15\cdot 23^{5} + 19\cdot 23^{6} + 23^{7} + 16\cdot 23^{8} + 10\cdot 23^{9} +O\left(23^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 6 + 20\cdot 23 + 4\cdot 23^{2} + 8\cdot 23^{3} + 4\cdot 23^{4} + 19\cdot 23^{6} + 12\cdot 23^{7} + 5\cdot 23^{8} + 15\cdot 23^{9} +O\left(23^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 22 a^{2} + 19 a + 22 + \left(21 a^{2} + 19 a + 13\right)\cdot 23 + \left(5 a^{2} + 5 a + 15\right)\cdot 23^{2} + \left(4 a^{2} + 9 a + 5\right)\cdot 23^{3} + \left(18 a^{2} + 13 a + 1\right)\cdot 23^{4} + \left(9 a^{2} + 8 a + 13\right)\cdot 23^{5} + \left(12 a^{2} + 19 a + 16\right)\cdot 23^{6} + \left(13 a^{2} + 9 a + 2\right)\cdot 23^{7} + \left(4 a^{2} + 5 a + 6\right)\cdot 23^{8} + \left(15 a^{2} + 17 a + 20\right)\cdot 23^{9} +O\left(23^{ 10 }\right)$
$r_{ 9 }$ $=$ $ 9 a^{2} + 21 a + 20 + \left(21 a^{2} + 17 a + 20\right)\cdot 23 + \left(21 a^{2} + 13 a + 13\right)\cdot 23^{2} + \left(16 a^{2} + 6 a + 22\right)\cdot 23^{3} + \left(4 a^{2} + 20 a + 13\right)\cdot 23^{4} + \left(21 a + 15\right)\cdot 23^{5} + \left(16 a^{2} + 4 a + 13\right)\cdot 23^{6} + \left(16 a^{2} + 4 a + 14\right)\cdot 23^{7} + \left(19 a^{2} + 4 a + 18\right)\cdot 23^{8} + \left(10 a^{2} + 6 a + 6\right)\cdot 23^{9} +O\left(23^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,4,2)(3,7,8)(5,6,9)$
$(1,5,3)(4,7,6)$
$(2,9,8)(4,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$1$$3$$(1,5,3)(2,9,8)(4,6,7)$$3 \zeta_{3}$
$1$$3$$(1,3,5)(2,8,9)(4,7,6)$$-3 \zeta_{3} - 3$
$3$$3$$(1,4,2)(3,7,8)(5,6,9)$$0$
$3$$3$$(1,2,4)(3,8,7)(5,9,6)$$0$
$3$$3$$(1,5,3)(4,7,6)$$0$
$3$$3$$(1,3,5)(4,6,7)$$0$
$3$$3$$(1,7,8)(2,5,4)(3,6,9)$$0$
$3$$3$$(1,8,7)(2,4,5)(3,9,6)$$0$
$3$$3$$(1,6,9)(2,3,4)(5,7,8)$$0$
$3$$3$$(1,9,6)(2,4,3)(5,8,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.