Properties

Label 3.3e4_73e2.9t7.2c1
Dimension 3
Group $C_3^2:C_3$
Conductor $ 3^{4} \cdot 73^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_3^2:C_3$
Conductor:$431649= 3^{4} \cdot 73^{2} $
Artin number field: Splitting field of $f= x^{9} - 28 x^{7} - 9 x^{6} + 237 x^{5} + 95 x^{4} - 613 x^{3} - 54 x^{2} + 405 x - 27 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_3^2:C_3$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{3} + x + 40 $
Roots:
$r_{ 1 }$ $=$ $ 23 a^{2} + 38 a + 1 + \left(34 a^{2} + 35 a + 23\right)\cdot 43 + \left(11 a^{2} + 5 a + 36\right)\cdot 43^{2} + \left(24 a + 28\right)\cdot 43^{3} + \left(14 a^{2} + 15 a + 23\right)\cdot 43^{4} + \left(33 a^{2} + 22 a + 36\right)\cdot 43^{5} + \left(8 a^{2} + 16 a + 5\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 4 a^{2} + 21 a + 17 + \left(36 a^{2} + 24 a + 38\right)\cdot 43 + \left(18 a^{2} + 11 a + 26\right)\cdot 43^{2} + \left(11 a^{2} + 29 a + 7\right)\cdot 43^{3} + \left(23 a^{2} + 23 a + 1\right)\cdot 43^{4} + \left(15 a^{2} + 3 a + 39\right)\cdot 43^{5} + \left(32 a^{2} + 35\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 16 a^{2} + 27 a + 25 + \left(15 a^{2} + 25 a + 24\right)\cdot 43 + \left(12 a^{2} + 25 a + 22\right)\cdot 43^{2} + \left(31 a^{2} + 32 a + 6\right)\cdot 43^{3} + \left(5 a^{2} + 3 a + 18\right)\cdot 43^{4} + \left(37 a^{2} + 17 a + 10\right)\cdot 43^{5} + \left(a^{2} + 26 a + 1\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 38 a^{2} + 29 a + 11 + \left(39 a^{2} + 2 a + 12\right)\cdot 43 + \left(42 a^{2} + 23 a + 14\right)\cdot 43^{2} + \left(32 a^{2} + 26 a + 36\right)\cdot 43^{3} + \left(38 a^{2} + 40 a + 25\right)\cdot 43^{4} + \left(34 a^{2} + 34 a + 37\right)\cdot 43^{5} + \left(34 a^{2} + a + 8\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 16 a^{2} + 8 a + 25 + \left(38 a^{2} + 10 a + 25\right)\cdot 43 + \left(42 a^{2} + 10 a + 28\right)\cdot 43^{2} + \left(29 a^{2} + 40 a + 5\right)\cdot 43^{3} + \left(37 a^{2} + 42 a + 25\right)\cdot 43^{4} + \left(27 a^{2} + 24 a + 18\right)\cdot 43^{5} + \left(35 a^{2} + 24 a + 9\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 6 + 40\cdot 43 + 5\cdot 43^{2} + 11\cdot 43^{3} + 20\cdot 43^{4} + 24\cdot 43^{5} + 34\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 13 + 17\cdot 43 + 28\cdot 43^{2} + 39\cdot 43^{3} + 33\cdot 43^{4} + 25\cdot 43^{5} + 10\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 32 a^{2} + 6 a + 7 + \left(7 a^{2} + 30 a + 5\right)\cdot 43 + 9 a\cdot 43^{2} + \left(23 a^{2} + 19 a + 1\right)\cdot 43^{3} + \left(9 a^{2} + 2 a + 35\right)\cdot 43^{4} + \left(23 a^{2} + 26 a + 29\right)\cdot 43^{5} + \left(15 a^{2} + 16 a + 24\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 9 }$ $=$ $ 24 + 28\cdot 43 + 8\cdot 43^{2} + 35\cdot 43^{3} + 31\cdot 43^{4} + 35\cdot 43^{5} + 40\cdot 43^{6} +O\left(43^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,4,6)(2,5,9)(3,8,7)$
$(4,5,8)(6,7,9)$
$(1,2,3)(4,8,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$1$$3$$(1,3,2)(4,8,5)(6,7,9)$$3 \zeta_{3}$
$1$$3$$(1,2,3)(4,5,8)(6,9,7)$$-3 \zeta_{3} - 3$
$3$$3$$(1,4,6)(2,5,9)(3,8,7)$$0$
$3$$3$$(1,6,4)(2,9,5)(3,7,8)$$0$
$3$$3$$(1,2,3)(4,8,5)$$0$
$3$$3$$(1,3,2)(4,5,8)$$0$
$3$$3$$(1,8,7)(2,4,6)(3,5,9)$$0$
$3$$3$$(1,7,8)(2,6,4)(3,9,5)$$0$
$3$$3$$(1,9,5)(2,7,8)(3,6,4)$$0$
$3$$3$$(1,5,9)(2,8,7)(3,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.