Properties

Label 3.3e4_73e2.9t7.1c2
Dimension 3
Group $C_3^2:C_3$
Conductor $ 3^{4} \cdot 73^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_3^2:C_3$
Conductor:$431649= 3^{4} \cdot 73^{2} $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} - 18 x^{7} + 40 x^{6} + 123 x^{5} - 141 x^{4} - 373 x^{3} + 57 x^{2} + 339 x + 127 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_3^2:C_3$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{3} + 4 x + 17 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 9\cdot 19 + 16\cdot 19^{2} + 9\cdot 19^{3} + 8\cdot 19^{4} + 12\cdot 19^{5} + 6\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 17 a^{2} + 7 a + 13 + \left(17 a^{2} + 7 a + 4\right)\cdot 19 + \left(18 a^{2} + 18 a + 14\right)\cdot 19^{2} + \left(16 a^{2} + 9 a + 10\right)\cdot 19^{3} + \left(5 a^{2} + 13 a + 3\right)\cdot 19^{4} + \left(12 a^{2} + 9 a + 1\right)\cdot 19^{5} + \left(18 a^{2} + 18 a + 11\right)\cdot 19^{6} + \left(4 a^{2} + 5 a + 14\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 17 a^{2} + 4 a + 18 + \left(18 a^{2} + 7 a + 13\right)\cdot 19 + \left(2 a^{2} + 14 a + 6\right)\cdot 19^{2} + \left(2 a^{2} + 10 a + 6\right)\cdot 19^{3} + \left(a^{2} + 13 a + 8\right)\cdot 19^{4} + \left(2 a^{2} + 10 a + 18\right)\cdot 19^{5} + \left(17 a^{2} + 6 a + 2\right)\cdot 19^{6} + \left(4 a^{2} + 16 a + 11\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 7 + 4\cdot 19 + 14\cdot 19^{2} + 15\cdot 19^{3} + 9\cdot 19^{4} + 9\cdot 19^{5} + 17\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 17 a^{2} + 9 a + 13 + \left(16 a^{2} + 18 a + 14\right)\cdot 19 + \left(11 a^{2} + 16 a + 1\right)\cdot 19^{2} + \left(6 a^{2} + a + 2\right)\cdot 19^{3} + \left(9 a^{2} + 6 a\right)\cdot 19^{4} + \left(18 a^{2} + 8 a + 5\right)\cdot 19^{5} + \left(8 a^{2} + 17 a + 4\right)\cdot 19^{6} + \left(a^{2} + 16 a + 5\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 4 a^{2} + 3 a + 10 + \left(3 a^{2} + 12 a + 3\right)\cdot 19 + \left(7 a^{2} + 2 a + 8\right)\cdot 19^{2} + \left(14 a^{2} + 7 a + 16\right)\cdot 19^{3} + \left(3 a^{2} + 18 a + 16\right)\cdot 19^{4} + \left(7 a^{2} + 12\right)\cdot 19^{5} + \left(10 a^{2} + 2 a + 1\right)\cdot 19^{6} + \left(12 a^{2} + 15 a + 3\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 3 + 16\cdot 19 + 5\cdot 19^{2} + 2\cdot 19^{4} + 15\cdot 19^{5} + 14\cdot 19^{6} + 16\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 8 a^{2} + 18 a + 13 + \left(4 a + 2\right)\cdot 19 + \left(2 a^{2} + 17 a + 4\right)\cdot 19^{2} + \left(8 a^{2} + 5 a + 3\right)\cdot 19^{3} + \left(a^{2} + 8 a + 9\right)\cdot 19^{4} + \left(9 a^{2} + 7 a + 5\right)\cdot 19^{5} + \left(8 a^{2} + 12 a + 5\right)\cdot 19^{6} + \left(8 a^{2} + 10 a + 14\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 9 }$ $=$ $ 13 a^{2} + 16 a + 1 + \left(18 a^{2} + 6 a + 7\right)\cdot 19 + \left(13 a^{2} + 6 a + 4\right)\cdot 19^{2} + \left(8 a^{2} + 2 a + 11\right)\cdot 19^{3} + \left(16 a^{2} + 16 a + 17\right)\cdot 19^{4} + \left(7 a^{2} + 14\right)\cdot 19^{5} + \left(12 a^{2} + 15\right)\cdot 19^{6} + \left(5 a^{2} + 11 a + 6\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(2,6,5)(3,9,8)$
$(1,2,8)(3,4,5)(6,9,7)$
$(1,7,4)(3,9,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$1$$3$$(1,7,4)(2,6,5)(3,8,9)$$-3 \zeta_{3} - 3$
$1$$3$$(1,4,7)(2,5,6)(3,9,8)$$3 \zeta_{3}$
$3$$3$$(1,2,8)(3,4,5)(6,9,7)$$0$
$3$$3$$(1,8,2)(3,5,4)(6,7,9)$$0$
$3$$3$$(1,7,4)(3,9,8)$$0$
$3$$3$$(1,4,7)(3,8,9)$$0$
$3$$3$$(1,6,8)(2,3,4)(5,9,7)$$0$
$3$$3$$(1,8,6)(2,4,3)(5,7,9)$$0$
$3$$3$$(1,5,8)(2,9,7)(3,4,6)$$0$
$3$$3$$(1,8,5)(2,7,9)(3,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.